Refine
Document Type
- Journal article (3)
Language
- English (3)
Is part of the Bibliography
- yes (3)
Institute
- Informatik (3)
Publisher
- De Gruyter (1)
- EDP Sciences (1)
- Springer (1)
Uncontrolled movement of instruments in laparoscopic surgery can lead to inadvertent tissue damage, particularly when the dissecting or electrosurgical instrument is located outside the field of view of the laparoscopic camera. The incidence and relevance of such events are currently unknown. The present work aims to identify and quantify potentially dangerous situations using the example of laparoscopic cholecystectomy (LC). Twenty-four final year medical students were prompted to each perform four consecutive LC attempts on a well-established box trainer in a surgical training environment following a standardized protocol in a porcine model. The following situation was defined as a critical event (CE): the dissecting instrument was inadvertently located outside the laparoscopic camera’s field of view. Simultaneous activation of the electrosurgical unit was defined as a highly critical event (hCE). Primary endpoint was the incidence of CEs. While performing 96 LCs, 2895 CEs were observed. Of these, 1059 (36.6%) were hCEs. The median number of CEs per LC was 20.5 (range: 1–125; IQR: 33) and the median number of hCEs per LC was 8.0 (range: 0–54, IQR: 10). Mean total operation time was 34.7 min (range: 15.6–62.5 min, IQR: 14.3 min). Our study demonstrates the significance of CEs as a potential risk factor for collateral damage during LC. Further studies are needed to investigate the occurrence of CE in clinical practice, not just for laparoscopic cholecystectomy but also for other procedures. Systematic training of future surgeons as well as technical solutions address this safety issue.
Purpose
Context awareness in the operating room (OR) is important to realize targeted assistance to support actors during surgery. A situation recognition system (SRS) is used to interpret intraoperative events and derive an intraoperative situation from these. To achieve a modular system architecture, it is desirable to de-couple the SRS from other system components. This leads to the need of an interface between such an SRS and context-aware systems (CAS). This work aims to provide an open standardized interface to enable loose coupling of the SRS with varying CAS to allow vendor-independent device orchestrations.
Methods
A requirements analysis investigated limiting factors that currently prevent the integration of CAS in today's ORs. These elicited requirements enabled the selection of a suitable base architecture. We examined how to specify this architecture with the constraints of an interoperability standard. The resulting middleware was integrated into a prototypic SRS and our system for intraoperative support, the OR-Pad, as exemplary CAS for evaluating whether our solution can enable context-aware assistance during simulated orthopedical interventions.
Results
The emerging Service-oriented Device Connectivity (SDC) standard series was selected to specify and implement a middleware for providing the interpreted contextual information while the SRS and CAS are loosely coupled. The results were verified within a proof of concept study using the OR-Pad demonstration scenario. The fulfillment of the CAS’ requirements to act context-aware, conformity to the SDC standard series, and the effort for integrating the middleware in individual systems were evaluated. The semantically unambiguous encoding of contextual information depends on the further standardization process of the SDC nomenclature. The discussion of the validity of these results proved the applicability and transferability of the middleware.
Conclusion
The specified and implemented SDC-based middleware shows the feasibility of loose coupling an SRS with unknown CAS to realize context-aware assistance in the OR.
Uncontrolled movements of laparoscopic instruments can lead to inadvertent injury of adjacent structures. The risk becomes evident when the dissecting instrument is located outside the field of view of the laparoscopic camera. Technical solutions to ensure patient safety are appreciated. The present work evaluated the feasibility of an automated binary classification of laparoscopic image data using Convolutional Neural Networks (CNN) to determine whether the dissecting instrument is located within the laparoscopic image section. A unique record of images was generated from six laparoscopic cholecystectomies in a surgical training environment to configure and train The CNN. By using a temporary version of the neural network, the annotation of the training image files could be automated and accelerated. A combination of oversampling and selective data augmentation was used to enlarge the fully labelled image data set and prevent loss of accuracy due to imbalanced class volumes. Subsequently the same approach was applied to the comprehensive, fully annotated Cholec80 database. The described process led to the generation of extensive and balanced training image data sets. The performance of the CNN-based binary classifiers was evaluated on separate test records from both databases. On our recorded data, an accuracy of 0.88 with regard to the safety-relevant classification was achieved. The subsequent evaluation on the Cholec80 data set yielded an accuracy of 0.84. The presented results demonstrate the feasibility of a binary classification of laparoscopic image data for the detection of adverse events in a surgical training environment using a specifically configured CNN architecture.