Refine
Document Type
- Conference proceeding (8)
- Journal article (3)
Is part of the Bibliography
- yes (11)
Institute
- Informatik (11)
Publisher
- IEEE (5)
- Springer (4)
- Cuvillier Verlag (1)
- RWTH Aachen (1)
To assess the quality of a person’s sleep, it is essential to examine the sleep behaviour by identifying the several sleep stages, their durations and sleep cycles. The established and gold standard procedure for sleep stage scoring is overnight polysomnography (PSG) with the Rechtschaffen and Kales (R-K) method. Unfortunately, the conduct of PSG is time-consuming and unfamiliar for the subjects and might have an impact of the recorded data. To avoid the disadvantages with PSG, it is important to make further investigations in low-cost home diagnostic systems. For this intention it is necessary to find suitable bio vital parameters for classifying sleep stages without any physical impairments at the same time. Due to the promising results in several publications we want to analyse existing methods for sleep stage classification based on the parameters body movement,
heartbeat and respiration. Our aim was to find different behaviour patterns in the several sleep stages. Therefore, the average values of 15 whole-night PSG recordings -obtained from the ‘DREAMS
Subjects Database’- where analysed in the light of heartbeat, body movement and respiration with 10 different methods.
This document presents an algorithm for a nonobtrusive recognition of Sleep/Wake states using signals derived from ECG, respiration, and body movement captured while lying in a bed. As a core mathematical base of system data analytics, multinomial logistic regression techniques were chosen. Derived parameters of the three signals are used as the input for the proposed method. The overall achieved accuracy rate is 84% for Wake/Sleep stages, with Cohen’s kappa value 0.46. The presented algorithm should support experts in analyzing sleep quality in more detail. The results confirm the potential of this method and disclose several ways for its improvement.
Die Erholung unseres Körpers und Gehirns von Müdigkeit ist direkt abhängig von der Qualität des Schlafes, die aus den Ergebnissen einer Schlafstudie ermittelt werden kann. Die Klassifizierung der Schlafstadien ist der erste Schritt dieser Studie und beinhaltet die Messung von Biovitaldaten und deren weitere Verarbeitung. Das non-invasive Schlafanalyse-System basiert auf einem Hardware-Sensornetz aus 24 Drucksensoren, das die Schlafphasenerkennung ermöglicht. Die Drucksensoren sind mit einem energieeffizienten Mikrocontroller über einen systemweiten Bus mit Adressarbitrierung verbunden. Ein wesentlicher Unterschied dieses Systems im Vergleich zu anderen Ansätzen ist die innovative Art, die Sensoren unter der Matratze zu platzieren. Diese Eigenschaft erleichtert die kontinuierliche Nutzung des Systems ohne fühlbaren Einfluss auf das gewohnte Bett. Das System wurde getestet, indem Experimente durchgeführt wurden, die den Schlaf verschiedener gesunder junger Personen aufzeichneten. Die ersten Ergebnisse weisen auf das Potenzial hin, nicht nur Atemfrequenz und Körperbewegung, sondern auch Herzfrequenz zu erfassen.
The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.
Recognition of sleep and wake states is one of the relevant parts of sleep analysis. Performing this measurement in a contactless way increases comfort for the users. We present an approach evaluating only movement and respiratory signals to achieve recognition, which can be measured non-obtrusively. The algorithm is based on multinomial logistic regression and analyses features extracted out of mentioned above signals. These features were identified and developed after performing fundamental research on characteristics of vital signals during sleep. The achieved accuracy of 87% with the Cohen’s kappa of 0.40 demonstrates the appropriateness of a chosen method and encourages continuing research on this topic.
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
This paper presents a generic method to enhance performance and incorporate temporal information for cardiorespiratory-based sleep stage classification with a limited feature set and limited data. The classification algorithm relies on random forests and a feature set extracted from long-time home monitoring for sleep analysis. Employing temporal feature stacking, the system could be significantly improved in terms of Cohen’s κ and accuracy. The detection performance could be improved for three classes of sleep stages (Wake, REM, Non-REM sleep), four classes (Wake, Non-REM-Light sleep, Non-REM Deep sleep, REM sleep), and five classes (Wake, N1, N2, N3/4, REM sleep) from a κ of 0.44 to 0.58, 0.33 to 0.51, and 0.28 to 0.44 respectively by stacking features before and after the epoch to be classified. Further analysis was done for the optimal length and combination method for this stacking approach. Overall, three methods and a variable duration between 30 s and 30 min have been analyzed. Overnight recordings of 36 healthy subjects from the Interdisciplinary Center for Sleep Medicine at Charité-Universitätsmedizin Berlin and Leave-One-Out-Cross-Validation on a patient-level have been used to validate the method.
Identifikation von Schlaf- und Wachzuständen durch die Auswertung von Atem- und Bewegungssignalen
(2021)
This document presents a new complete standalone system for a recognition of sleep apnea using signals from the pressure sensors placed under the mattress. The developed hardware part of the system is tuned to filter and to amplify the signal. Its software part performs more accurate signal filtering and identification of apnea events. The overall achieved accuracy of the recognition of apnea occurrence is 91%, with the average measured recognition delay of about 15 seconds, which confirms the suitability of the proposed method for future employment. The main aim of the presented approach is the support of the healthcare system with the cost-efficient tool for recognition of sleep apnea in the home environment.
Fragestellung: Das klinische Standardverfahren und Referenz der Schlafmessung und der Klassifizierung der einzelnen Schlafstadien ist die Polysomnographie (PSG). Alternative Ansätze zu diesem aufwändigen Verfahren könnten einige Vorteile bieten, wenn die Messungen auf eine komfortablere Weise durchgeführt werden. Das Hauptziel dieser Forschung Studie ist es, einen Algorithmus für die automatische Klassifizierung von Schlafstadien zu entwickeln, der ausschließlich Bewegungs- und Atmungssignale verwendet [1].
Patienten und Methoden: Nach der Analyse der aktuellen Forschungsarbeiten haben wir multinomiale logistische Regression als Grundlage für den Ansatz gewählt [2]. Um die Genauigkeit der Auswertung zu erhöhen, wurden vier Features entwickelt, die aus Bewegungs- und Atemsignalen abgeleitet wurden. Für die Auswertung wurden die nächtlichen Aufzeichnungen von 35 Personen verwendet, die von der Charité-Universitätsmedizin Berlin zur Verfügung gestellt wurden. Das Durchschnittsalter der Teilnehmer betrug 38,6 +/– 14,5 Jahre und der BMI lag bei durchschnittlich 24,4 +/– 4,9 kg/m2. Da der Algorithmus mit drei Stadien arbeitet, wurden die Stadien N1, N2 und N3 zum NREM-Stadium zusammengeführt. Der verfügbare Datensatz wurde strikt aufgeteilt: in einen Trainingsdatensatz von etwa 100 h und in einen Testdatensatz mit etwa 160 h nächtlicher Aufzeichnungen. Beide Datensätze wiesen ein ähnliches Verhältnis zwischen Männern und Frauen auf, und der durchschnittliche BMI wies keine signifikante Abweichung auf.
Ergebnisse: Der Algorithmus wurde implementiert und lieferte erfolgreiche Ergebnisse: die Genauigkeit der Erkennung von Wach-/NREM-/REM-Phasen liegt bei 73 %, mit einem Cohen’s Kappa von 0,44 für die analysierten 19.324 Schlafepochen von jeweils 30 s. Die beobachtete gewisse Überschätzung der NREM-Phase lässt sich teilweise durch ihre Prävalenz in einem typischen Schlafmuster erklären. Selbst die Verwendung eines ausbalancierten Trainingsdatensatzes konnte dieses Problem nicht vollständig lösen.
Schlussfolgerungen: Die erreichten Ergebnisse haben die Tauglichkeit des Ansatzes prinzipiell bestätigt. Dieser hat den Vorteil, dass nur Bewegungs- und Atemsignale verwendet werden, die mit weniger Aufwand und komfortabler für Benutzer aufgezeichnet werden können als z. B. Herz- oder EEG-Signale. Daher stellt das neue System eine deutliche Verbesserung im Vergleich zu bestehenden Ansätzen dar. Die Zusammenführung der beschriebenen algorithmischen Software mit dem in [1] beschriebenen Hardwaresystem zur Messung von Atem- und Körperbewegungssignalen zu einem autonomen, berührungslosen System zur kontinuierlichen Schlafüberwachung ist eine mögliche Richtung zukünftiger Arbeiten.