Die Erfindung betrifft eine Vorrichtung (100) und ein Verfahren zum elektrischen Verbinden und Trennen zweier elektrischer Potentiale (1, 2). Des Weiteren betrifft die Erfindung eine Verwendung der Vorrichtung (100). Dabei umfasst die Vorrichtung (100): – ein erstes Modul, welches einen ersten und einen zweiten Transistor (10a, 10b) umfasst, wobei der erste Transistor (10a) antiseriell zu dem zweiten Transistor (10b) geschaltet ist; und – ein zweites Modul, welches einen dritten und einen vierten Transistor (10c, 10d) umfasst, wobei der dritte Transistor (10c) antiseriell zu dem vierten Transistor (10d) geschaltet ist; wobei das erste Modul und das zweite Modul parallel geschaltet sind.
In recent years, significant progress was made on switched-capacitor DCDC converters as they enable fully integrated on chip power management. New converter topologies overcame the fixed input-to-output voltage limitation and achieved high efficiency at high power densities. SC converters are attractive to not only mobile handheld devices with small input and output voltages, but also for power conversion in IoTs, industrial and automotive applications, etc. Such applications need to be capable of handling high input voltages of more than 10V. This talk highlights the challenges of the required supporting circuits and high voltage techniques, which arise for high Vin SC converters. It includes level shifters, charge pumps and back-to-back switches. High Vin conversion is demonstrated in a 4:1 SC DCDC converter with an input voltage as high as 17V with a peak efficiency of 45 %, and a buckboost SC converter with an input voltage range starting from 2 up to 13V, which utilizes a total of 17 ratios and achieves a peak efficiency of 81.5 %. Furthermore a highly integrated micro power supply approach is introduced, which is connected directly to the 120/230 Vrms mains, with an output power of 3mW, resulting in a power density >390μW/mm², which exceeds prior art by a factor of 11.
In diesem Beitrag wird ein kapazitiver Low Power DC-DC Wandler mit 15 konfigurierbaren Übersetzungsverhältnissen, einem hohen Eingangsspannungsbereich von 5 V bis 20 V und einer konstanten Ausgangsspannung von 5 V vorgestellt. Bei einer Ausgangsleistung von 5 mW wird ein maximaler Wirkungsgrad von 81% erreicht. Die Implementierung erfolgt in einem 350 nm Hochvolt-CMOS-Prozess. Während es für niedrige Eingangsspannungen eine Vielzahl an Topologien und Konzepten gibt, wurden vollintegrierte SC-Wandler für höhere Eingangsspannungen (> 8 V) bisher nur wenig untersucht. Höhere Spannungen erfordern den Einsatz von Hochvolttransistoren und eine aufwändigere Ansteuerung. Um über einen weiteren Eingangsspannungsbereicht mit hoher Genauigkeit und hohem Wirkungsgrad zu wandeln, erweist sich die Topologie des rekursiven Switched-Capacitor Wandlers (RSC Wandler) als vorteilhaft. In der vorliegenden 4-Bit Implementierung ist der RSC Wandler aus N = 4 2:1 Serien-Parallel Wandler-Zellen aufgebaut. Durch verschiedene Anordnung der einzelnen Zellen können 2ᴺ -1 = 15 Wandlungsverhältnisse realisiert werden. Mittels Rekursion werden in jedem Wandlungsverhältnis alle Kapazitäten genutzt, wodurch die Stromfähigkeit und der Wirkungsgrad des Wandlers deutlich verbessert werden. Einheitliche 2:1 Wandler-Zellen ermöglichen einen modularen Aufbau des Layouts.
Die Nachfrage nach kompakten Spannungsversorgungen ist in den letzten Jahren stark gestiegen. Vor allem im Bereich der mobilen Geräte wachsen die Anforderung an die Spannungsversorgung hinsichtlich Bauvolumen und Batterielaufzeit. Für die Vollintegration von DC-DC- Wandlern als „Power Supply on Chip“ ist der SC-Wandler (Switched-Capacitor-Wandler) besonders geeignet. Insbesondere für Low-Power-Anwendungen im Bereich 10 mW kann ein SC-Wandler sehr gut, ohne externe Bauelemente, integriert werden. Während es für niedrige Eingangsspannungen (bis zu 5 V) eine Vielzahl an Topologien und Konzepten gibt, wurden SC-Wandler für höhere Eingangsspannungen (> 8 V) bisher nur wenig untersucht. Dieser Beitrag untersucht die wichtigsten Grundlagen für SC-Wandler mit Schwerpunkt auf hoher und zugleich variabler Eingangsspannung im Bereich 5 - 20 V. Am Beispiel eines Multi-Ratio-Wandlers (Wandler mit mehreren Übersetzungsverhältnissen), dem rekursiven SC-Wandler (RSC- Wandler), werden die Anforderungen eines SC- Wandler für hohe Eingangsspannungen herausgearbeitet und diskutiert.
The maintenance issue of batteries and the limited power level of energy harvesting is addressed by the presented integrated micropower supply. Connected to the 120/230-VRMS mains, it provides a 3.3-V ac output voltage, suitable for applications such as the Internet-of Things and smart homes. The micropower supply consists of a fully integrated ac–dc and dc–dc converter with one external low-voltage surface mount device buffer capacitor, resulting in an extremely compact size. Fabricated in a low-cost 0.35-μm 700-V complimentary metal-oxide-semiconductor technology, it covers a die size of 7.7 mm². The ac–dc converter is a direct coupled, full-wave rectifier with a subsequent series regulator. The dc–dc stage is a fully integrated capacitive 4:1 converter with up to 17-V input and 47.4% peak efficiency. The power supply comprises several high-voltage control circuits including level shifters and various types of charge pumps (CPs). A source supplied CP is utilized that supports a varying switching node potential. The overall losses are discussed and optimized, including flying capacitor bottom-plate losses. The power supply achieves an output power of 3 mW, resulting in a power density of 390 μW/mm². This exceeds prior art by a factor of 11.
In recent years, significant progress has been made on switched-capacitor DC-DC converters as they enable fully integrated on-chip power management. New converter topologies overcame the fixed input-to-output voltage limitation and achieved high efficiency at high power densities. SC converters are attractive to not only mobile handheld devices with small input and output voltages, but also for power conversion in IoE, industrial and automotive applications, etc. Such applications need to be capable of handling widely varying input voltages of more than 10V, which requires a large amount of conversion ratios. The goal is to achieve a fine granularity with the least number of flying capacitors. In [1] an SC converter was introduced that achieves these goals at low input voltage VIN ≤ 2.5V. [2] shows good efficiency up to VIN = 8V while its conversion ratio is restricted to ≤1/2 with a limited, non-equidistant number of conversion steps. A particular challenge arises with increasing input voltage as several loss mechanisms like parasitic bottom-plate losses and gate-charge losses of high-voltage transistors become of significant influence. High input voltages require supporting circuits like level shifters, auxiliary supply rails etc., which allocate additional area and add losses [2-5]. The combination of both increasing voltage and conversion ratios (VCR) lowers the efficiency and the achievable output power of SC converters. [3] and [5] use external capacitors to enable higher output power, especially for higher VIN. However, this is contradictory to the goal of a fully integrated power supply.
A high-voltage replica based current sensor is presented, along with challenges and design techniques which are rarely discussed in literature so far. The performance is evaluated by detailed small signal and large signal analysis. By dedicated placing of high-voltage cascode devices, while keeping as many low-voltage devices as possible, a high gain-bandwidth product is achieved. A decoupling and biasing circuit is introduced which improves the response time of the current sensor at on/off transitions by a factor of five. The current sensor is implemented in a 180nm HV BiCMOS technology. The sensor achieves a DC loop gain of 83 dB and a gain-bandwidth product of 7 MHz. With the proposed techniques, the gain-bandwidth product is increased by a factor of six. The measurable current range is between 60mA and 1.5 A. The performance is demonstrated in a 500 kHz buck converter at an input voltage of 40V. The overall circuit concept is suitable for 100V and beyond, enabling high performance power management designs including switched mode power supplies and motor applications.
The power supply is one of the major challenges for applications like internet of things IoTs and smart home. The maintenance issue of batteries and the limited power level of energy harvesting is addressed by the integrated micro power supply presented in this paper. Connected to the 120/230 Vrms mains, which is one of the most reliable energy sources and anywhere indoor available, it provides a 3.3V DC output voltage. The micro power supply consists of a fully integrated ACDC and DCDC converter with one external low voltage SMD buffer capacitor. The micro power supply is fabricated in a low cost 0.35 μm 700 V CMOS technology and covers a die size of 7.7 mm². The use of only one external low voltage SMD capacitor, results in an extremely compact form factor. The ACDC is a direct coupled, full wave rectifier with a subsequent bipolar shunt regulator, which provides an output voltage around 17 V. The DCDC stage is a fully integrated 4:1 SC DCDC converter with an input voltage as high as 17 V and a peak efficiency of 45 %. The power supply achieves an overall output power of 3 mW, resulting in a power density of 390 μW/mm². This exceeds prior art by a factor of 11.