Refine
Year of publication
- 2020 (2)
Document Type
- Journal article (2)
Language
- English (2)
Is part of the Bibliography
- yes (2)
Institute
- Life Sciences (2)
Publisher
- Elsevier (2)
The data presented in this article characterize the thermomechanical and microhardness properties of a novel melamine-formaldehyde resin (MF) intended for the use as a self-healing surface coating. The investigated MF resin is able to undergo reversible crosslinking via Diels Alder reactive groups. The microhardness data were obtained from nanoindentation measurements performed on solid resin film samples at different stages of the self-healing cycle. Thermomechanical analysis was performed under dynamic load conditions. The data provide supplemental material to the manuscript published by Urdl et al. 2020 (https://doi.org/10.1016/j.eurpolymj.2020.109601) on the self-healing performance of this resin, where a more thorough discussion on the preparation, the properties of this coating material and its application in impregnated paper-based decorative laminates can be found.
The self-healing effect of melamine-based surfaces, triggered by temperature, was investigated. The temperature triggered reversible healing chemistry, on which the self-healing effect is based, was the Diels-Alder (DA) reaction between furan and malemeide groups. Melamine-furan containing building blocks were connected by multi-functional maleimide crosslinker via a Diels-Alder (DA) reaction to giva a DA adduct. The DA adduct was then reacted with formaldehyde to form a network by conventional condensation reaction of melamine amino groups with formaldehyde. The obtained resin was characterised and used for the impregnation of paper. Impregnated papers and neat resin werde used to perform scratch-healing tests and mechanical analysis of the novel coating system.