Refine
Document Type
- Journal article (42)
Is part of the Bibliography
- yes (42)
Institute
- Life Sciences (42)
Publisher
- Elsevier (7)
- MDPI (7)
- Wiley (6)
- De Gruyter (5)
- Liebert (2)
- Springer (2)
- Wiley-Blackwell (2)
- Wiley-VCH (2)
- American Chemical Society (1)
- Frontiers Media (1)
Natural extracellular matrix (ECM) represents an ideal biomaterial for tissue engineering and regenerative medicine approaches. For further functionalization, there is a need for specific addressable functional groups within this biomaterial. Metabolic glycoengineering (MGE) provides a technique to incorporate modified monosaccharide derivatives into the ECM during their assembly, which was shown by us earlier for the production of a modified fibroblast-derived dermal ECM.
Human adipose-derived stem cells (hASCs) have become an important cell source for the use in tissue engineering and other medical applications. Not every biomaterial is suitable for human cell culture and requires surface modifications to enable cell adhesion and proliferation. Our hypothesis is that chemical surface modifications introduced by low-discharge plasma enhance the adhesion and proliferation of hASCs. Polystyrene (PS) surfaces were modified either by ammonia (NH3), carbon dioxide (CO2) or acrylic acid (AAc) plasma. The results show that the initial cell adhesion is significantly higher on all modified surfaces than on unmodified material as evaluated by bright field microscopy, live/dead staining, total DNA amount and scanning electron microscopy. The formation of focal adhesions was well pronounced on the Tissue Culture PS, NH3-, and CO2 plasma modified samples. The number of matured fibrillar adhesions was significantly higher on NH3 plasmamodified surfaces than on all other surfaces. Our study validates the suitability of chemical plasma activation and represents a method to enhance hASCs adhesion and improved cell expansion. All chemical modification promoted hASCs adhesion and can therefore be used for the modification of different scaffold materials whereby NH3-plasma modified surfaces resulted in the best outcome concerning hASCs adhesion and proliferation.
Size and function of bioartificial tissue models are still limited due to the lack of blood vessels and dynamic perfusion for nutrient supply. In this study, we evaluated the use of cytocompatible methacryl-modified gelatin for the fabrication of a hydrogel-based tube by dip-coating and subsequent photo-initiated cross-linking. The wall thickness of the tubes and the diameter were tuned by the degree of gelatin methacryl-modification and the number of dipping cycles. The dipping temperature of the gelatin solution was adjusted to achieve low viscous fluids of approximately 0.1 Pa s and was different for gelatin derivatives with different modification degrees. A versatile perfusion bioreactor for the supply of surrounding tissue models was developed, which can be adaped to several geometries and sizes of blood-vessel mimicking tubes. The manufactured bendable gelatin tubes were permeable for water and dissolved substances, like Nile Blue and serum albumin. As a proof of concept, human fibroblasts in a three-dimensional collagen tissue model were sucessfully supplied with nutrients via the central gelatin tube under dynamic conditions for 2 days. Moreover, the tubes could be used as scaffolds to build-up a functional and viable endothelial layer. Hence, the presented tools can contribute to solving current challenges in tissue engineering.
Though bioprinting is a forward-looking approach in bone tissue engineering, the development of bioinks which are on the one hand processable with the chosen printing technique, and on the other hand possess the relevant mechanical as well as osteoconductive features remains a challenge. In the present study, polymer solutions based on methacrylated gelatin and methacrylated hyaluronic acid modified with hydroxyapatite (HAp) particles (5 wt%) were prepared. Encapsulation of primary human adipose derived stem cells in the HAp-containing gels and culture for 28 d resulted in a storage moduli significantly increased to 126% ± 9.6% compared to the value on day 1 by the sole influence of the HAp. Additional use of osteogenic media components resulted in an increase of storage module up to 199% ± 27.8%. Similarly, the loss moduli was increased to 370% ± 122.1% under the influence of osteogenic media components and HAp. Those changes in rheological material characteristics indicate a distinct change in elastic and viscous hydrogel properties, and are attributed to extensive matrix production in the hydrogels by the encapsulated cells, what could also be proven by staining of bone matrix components like collagen I, fibronectin, alkaline phosphatase and osteopontin. When using the cell-laden polymer solutions as bioinks to build up relevant geometries, the ink showed excellent printability and the printed grid structure's integrity remained intact over a culture time of 28 d. Again, an intense matrix formation as well as upregulation of osteogenic markers by the encapsulated cells could be shown. In conclusion, we demonstrated that our HAp-containing bioinks and hydrogels on basis of methacrylated gelatin and hyaluronic acid are on the one hand highly suitable for the build up of relevant three-dimensional geometries with microextrusion bioprinting, and on the other hand exhibit a significant positive effect on bone matrix development and remodeling in the hydrogels, as indicated by rheological measurements and staining of bone components. This makes the developed composite hydrogels an excellent material for bone bioprinting approaches.
Azide-bearing cell-derived extracellular matrices (“clickECMs”) have emerged as a highly exciting new class of biomaterials. They conserve substantial characteristics of the natural extracellular matrix (ECM) and offer simultaneously small abiotic functional groups that enable bioorthogonal bioconjugation reactions. Despite their attractiveness, investigation of their biomolecular composition is very challenging due to the insoluble and highly complex nature of cell-derived matrices (CDMs). Yet, thorough qualitative and quantitative analysis of the overall material composition, organisation, localisation, and distribution of typical ECM-specific biomolecules is essential for consistent advancement of CDMs and the understanding of the prospective functions of the developed biomaterial. In this study, we evaluated frequently used methods for the analysis of complex CDMs. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and (immune)histochemical staining methods in combination with several microscopic techniques were found to be highly eligible. Commercially available colorimetric protein assays turned out to deliver inaccurate information on CDMs. In contrast, we determined the nitrogen content of CDMs by elementary analysis and converted it into total protein content using conversion factors which were calculated from matching amino acid compositions. The amount of insoluble collagens was assessed based on the hydroxyproline content. The Sircol™ assay was identified as a suitable method to quantify soluble collagens while the Blyscan™ assay was found to be well-suited for the quantification of sulphated glycosaminoglycans (sGAGs). Eventually, we propose a series of suitable methods to reliably characterise the biomolecular composition of fibroblast-derived clickECM.
In recent years, the development and application of decellularized extracellular matrices (ECMs) for use as biomaterials have grown rapidly. These cell-derived matrices (CDMs) represent highly bioactive and biocompatible materials consisting of a complex assembly of biomolecules. Even though CDMs mimic the natural microenvironment of cells in vivo very closely, they still lack specifically addressable functional groups, which are often required to tailor a biomaterial functionality by bioconjugation. To overcome this limitation, metabolic glycoengineering has emerged as a powerful tool to equip CDMs with chemical groups such as azides. These small chemical handles are known for their ability to undergo bioorthogonal click reactions, which represent a desirable reaction type for bioconjugation. However, ECM insolubility makes its processing very challenging. In this contribution, we isolated both the unmodified ECM and azide-modified clickECM by osmotic lysis. In a first step, these matrices were concentrated to remove excessive water from the decellularization step. Next, the hydrogel-like ECM and clickECM films were mechanically fragmentized, resulting in easy to pipette suspensions with fragment sizes ranging from 7.62 to 31.29 μm (as indicated by the mean d90 and d10 values). The biomolecular composition was not impaired as proven by immunohistochemistry. The suspensions were used for the reproducible generation of surface coatings, which proved to be homogeneous in terms of ECM fragment sizes and coating thicknesses (the mean coating thickness was found to be 33.2 ± 7.3 μm). Furthermore, they were stable against fluid-mechanical abrasion in a laminar flow cell. When primary human fibroblasts were cultured on the coated substrates, an increased bioactivity was observed. By conjugating the azides within the clickECM coatings with alkyne-coupled biotin molecules, a bioconjugation platform was obtained, where the biotin–streptavidin interaction could be used. Its applicability was demonstrated by equipping the bioactive clickECM coatings with horseradish peroxidase as a model enzyme.
The extracellular matrix (ECM) naturally surrounds cells in humans, and therefore represents the ideal biomaterial for tissue engineering. ECM from different tissues exhibit different composition and physical characteristics. Thus, ECM provides not only physical support but also contains crucial biochemical signals that influence cell adhesion, morphology, proliferation and differentiation. Next to native ECM from mature tissue, ECM can also be obtained from the in vitro culture of cells. In this study, we aimed to highlight the supporting effect of cell-derived- ECM (cdECM) on adipogenic differentiation. ASCs were seeded on top of cdECM from ASCs (scdECM) or pre-adipocytes (acdECM). The impact of ECM on cellular activity was determined by LDH assay, WST I assay and BrdU assay. A supporting effect of cdECM substrates on adipogenic differentiation was determined by oil red O staining and subsequent quantification. Results revealed no effect of cdECM substrates on cellular activity. Regarding adipogenic differentiation a supporting effect of cdECM substrates was obtained compared to control. With these results, we confirm cdECM as a promising biomaterial for adipose tissue engineering.
Bone tissue is highly vascularized. The crosstalk of vascular and osteogenic cells is not only responsible for the formation of the strongly divergent tissue types but also for their physiological maintenance and repair. Extrusion-based bioprinting presents a promising fabrication method for bone replacement. It allows for the production of large-volume constructs, which can be tailored to individual tissue defect geometries. In this study, we used the all-gelatin-based toolbox of methacryl-modified gelatin (GM), non-modified gelatin (G) and acetylated GM (GMA) to tailor both the properties of the bioink towards improved printability, and the properties of the crosslinked hydrogel towards enhanced support of vascular network formation by simple blending. The vasculogenic behavior of human dermal microvascular endothelial cells (HDMECs) and human adipose-derived stem cells (ASCs) was evaluated in the different hydrogel formulations for 14 days. Co-culture constructs including a vascular component and an osteogenic component (i.e. a bone bioink based on GM, hydroxyapatite and ASCs) were fabricated via extrusion-based bioprinting. Bioprinted co-culture constructs exhibited functional tissue-specific cells whose interplay positively affected the formation and maintenance of vascular-like structures. The setup further enabled the deposition of bone matrix associated proteins like collagen type I, fibronectin and alkaline phosphatase within the 30-day culture.
Improvement of a three-layered in vitro skin model for topical application of irritating substances
(2020)
In the field of skin tissue engineering, the development of physiologically relevant in vitro skin models comprising all skin layers, namely epidermis, dermis, and subcutis, is a great challenge. Increasing regulatory requirements and the ban on animal experiments for substance testing demand the development of reliable and in vivo-like test systems, which enable high-throughput screening of substances. However, the reproducibility and applicability of in vitro testing has so far been insufficient due to fibroblast-mediated contraction. To overcome this pitfall, an advanced 3-layered skin model was developed. While the epidermis of standard skin models showed an 80% contraction, the initial epidermal area of our advanced skin models was maintained. The improved barrier function of the advanced models was quantified by an indirect barrier function test and a permeability assay. Histochemical and immunofluorescence staining of the advanced model showed well-defined epidermal layers, a dermal part with distributed human dermal fibroblasts and a subcutis with round-shaped adipocytes. The successful response of these advanced 3-layered models for skin irritation testing demonstrated the suitability as an in vitro model for these clinical tests: only the advanced model classified irritative and non-irritative substances correctly. These results indicate that the advanced set up of the 3-layered in vitro skin model maintains skin barrier function and therefore makes them more suitable for irritation testing.
Gelatin is one of the most prominent biopolymers in biomedical material research and development. It is frequently used in hybrid hydrogels, which combine the advantageous properties of bio‐based and synthetic polymers. To prevent the biological component from leaching out of the hydrogel, the biomolecules can be equipped with azides. Those groups can be used to immobilize gelatin covalently in hydrogels by the highly selective and specific azide–alkyne cycloaddition. In this contribution, we functionalized gelatin with azides at its lysine residues by diazo transfer, which offers the great advantage of only minimal side‐chain extension. Approximately 84–90% of the amino groups are modified as shown by 1H‐NMR spectroscopy, 2,4,6‐trinitrobenzenesulfonic acid assay as well as Fourier‐transform infrared spectroscopy, rheology, and the determination of the isoelectric point. Furthermore, the azido‐functional gelatin is incorporated into hydrogels based on poly(ethylene glycol) diacrylate (PEG‐DA) at different concentrations (0.6, 3.0, and 5.5%). All hydrogels were classified as noncyctotoxic with significantly enhanced cell adhesion of human fibroblasts on their surfaces compared to pure PEG‐DA hydrogels. Thus, the new gelatin derivative is found to be a very promising building block for tailoring the bioactivity of materials.