Refine
Document Type
- Article (41)
Is part of the Bibliography
- yes (41)
Institute
- Life Sciences (41)
Publisher
- Elsevier (7)
- MDPI (6)
- Wiley (6)
- De Gruyter (5)
- Liebert (2)
- Springer (2)
- Wiley-Blackwell (2)
- Wiley-VCH (2)
- American Chemical Society (1)
- Frontiers Media (1)
To date, special interest has been paid to composite scaffolds based on polymers enriched with hydroxyapatite (HA). However, the role of HA containing different trace elements such as silicate in the structure of a polymer scaffold has not yet been fully explored. Here, we report the potential use of silicate-containing hydroxyapatite (SiHA) microparticles and microparticle aggregates in the predominant range from 2.23 to 12.40 μm in combination with polycaprolactone (PCL) as a hybrid scaffold with randomly oriented and well-aligned microfibers for regeneration of bone tissue. Chemical and mechanical properties of the developed 3D scaffolds were investigated with XRD, FTIR, EDX and tensile testing. Furthermore, the internal structure and surface morphology of the scaffolds were analyzed using synchrotron X-ray μCT and SEM. Upon culturing human mesenchymal stem cells (hMSC) on PCL-SiHA scaffolds, we found that both SiHA inclusion and microfiber orientation affected cell adhesion. The best hMSCs viability was revealed at 10 day for the PCL-SiHA scaffolds with well-aligned structure (~82%). It is expected that novel hybrid scaffolds of PCL will improve tissue ingrowth in vivo due to hydrophilic SiHA microparticles in combination with randomly oriented and well-aligned PCL microfibers, which mimic the structure of extracellular matrix of bone tissue.
Artificial adipose tissue (AT) constructs are urgently needed to treat severe wounds, to replace removed tissue, or for the use as in vitro model to screen for potential drugs or study metabolic pathways. The clinical translation of products is mostly prevented by the absence of a vascular component that would allow a sustainable maintenance and an extension of the construct to a relevant size. With this study, we aimed to evaluate the suitability of a novel material based on bacterial cellulose (CBM) on the defined adipogenic differentiation of human adipose-derived stem cells (ASCs) and the maintenance of the received adipocytes (diffASCs) and human microvascular endothelial cells (mvECs) in mono- and coculture. A slight acceleration of adipogenic differentiation over regular tissue culture polystyrene (TCPS) was seen on CBM under defined conditions, whereas on the maintenance of the generated adipocytes, comparable effects were detected for both materials. CBM facilitated the formation of vascular like structures in monoculture of mvECs, which was not observed on TCPS. By contrast, vascular-like structures were detected in CBM and TCPS in coculture by the presence of diffASCs. Concluding, CBM represents a promising material in vascularized AT engineering with the potential to speed up and simplify the in vitro setup of engineered products.
Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans.
Size and function of bioartificial tissue models are still limited due to the lack of blood vessels and dynamic perfusion for nutrient supply. In this study, we evaluated the use of cytocompatible methacryl-modified gelatin for the fabrication of a hydrogel-based tube by dip-coating and subsequent photo-initiated cross-linking. The wall thickness of the tubes and the diameter were tuned by the degree of gelatin methacryl-modification and the number of dipping cycles. The dipping temperature of the gelatin solution was adjusted to achieve low viscous fluids of approximately 0.1 Pa s and was different for gelatin derivatives with different modification degrees. A versatile perfusion bioreactor for the supply of surrounding tissue models was developed, which can be adaped to several geometries and sizes of blood-vessel mimicking tubes. The manufactured bendable gelatin tubes were permeable for water and dissolved substances, like Nile Blue and serum albumin. As a proof of concept, human fibroblasts in a three-dimensional collagen tissue model were sucessfully supplied with nutrients via the central gelatin tube under dynamic conditions for 2 days. Moreover, the tubes could be used as scaffolds to build-up a functional and viable endothelial layer. Hence, the presented tools can contribute to solving current challenges in tissue engineering.
Tissue constructs of physiologically relevant scale require a vascular system to maintain cell viability. However, in vitro vascularization of engineered tissues is still a major challenge. Successful approaches are based on a feeder layer (FL) to support vascularization. Here, we investigated whether the supporting effect on the self‐assembled formation of prevascular‐like structures by microvascular endothelial cells (mvECs) originates from the FL itself or from its extracellular matrix (ECM). Therefore, we compared the influence of ECM, either derived from adipose‐derived stem cells (ASCs) or adipogenically differentiated ASCs, with the classical cell‐based FL. All cell‐derived ECM (cdECM) substrates enabled mvEC growth with high viability. Prevascular‐like structures were visualized by immunofluorescence staining of endothelial surface protein CD31 and could be observed on all cdECM and FL substrates but not on control substrate collagen I. On adipogenically differentiated ECM, longer and higher branched structures could be found compared with stem cell cdECM. An increased concentration of proangiogenic factors was found in cdECM substrates and FL approaches compared with controls. Finally, the expression of proteins associated with tube formation (E‐selectin and thrombomodulin) was confirmed. These results highlight cdECM as promising biomaterial for adipose tissue engineering by inducing the spontaneous formation of prevascular‐like structures by mvECs.
The development of in vitro adipose tissue constructs is highly desired to cope with the increased demand for substitutes to replace damaged soft tissue after high graded burns, deformities or tumor removal. To achieve clinically relevant dimensions, vascularization of soft tissue constructs becomes inevitable but still poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell source for the setup of vascularized fatty tissue constructs as they can be differentiated into adipocytes and endothelial cells in vitro and are thereby available in sufficiently high cell numbers.
This review summarizes the currently known characteristics of ASCs and achievements in adipogenic and endothelial differentiation in vitro. Further, the interdependency of adipogenesis and angiogenesis based on the crosstalk of endothelial cells, stem cells and adipocytes is addressed at the molecular level. Finally, achievements and limitations of current co-culture conditions for the construction of vascularized adipose tissue are evaluated.
Bone tissue is highly vascularized. The crosstalk of vascular and osteogenic cells is not only responsible for the formation of the strongly divergent tissue types but also for their physiological maintenance and repair. Extrusion-based bioprinting presents a promising fabrication method for bone replacement. It allows for the production of large-volume constructs, which can be tailored to individual tissue defect geometries. In this study, we used the all-gelatin-based toolbox of methacryl-modified gelatin (GM), non-modified gelatin (G) and acetylated GM (GMA) to tailor both the properties of the bioink towards improved printability, and the properties of the crosslinked hydrogel towards enhanced support of vascular network formation by simple blending. The vasculogenic behavior of human dermal microvascular endothelial cells (HDMECs) and human adipose-derived stem cells (ASCs) was evaluated in the different hydrogel formulations for 14 days. Co-culture constructs including a vascular component and an osteogenic component (i.e. a bone bioink based on GM, hydroxyapatite and ASCs) were fabricated via extrusion-based bioprinting. Bioprinted co-culture constructs exhibited functional tissue-specific cells whose interplay positively affected the formation and maintenance of vascular-like structures. The setup further enabled the deposition of bone matrix associated proteins like collagen type I, fibronectin and alkaline phosphatase within the 30-day culture.
An advanced ‘clickECM’ that can be modified by the inverse-electron demand Diels-Alder reaction
(2021)
The extracellular matrix (ECM) represents the natural environment of cells in tissue and therefore is a promising biomaterial in a variety of applications. Depending on the purpose, it is necessary to equip the ECM with specific addressable functional groups for further modification with bioactive molecules, for controllable cross-linking and/or covalent binding to surfaces. Metabolic glycoengineering (MGE) enables the specific modification of the ECM with such functional groups without affecting the native structure of the ECM. In a previous approach (S. M. Ruff, S. Keller, D. E. Wieland, V. Wittmann, G. E. M. Tovar, M. Bach, P. J. Kluger, Acta Biomater. 2017, 52, 159–170), we demonstrated the modification of an ECM with azido groups, which can be addressed by bioorthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC). Here, we demonstrate the modification of an ECM with dienophiles (terminal alkenes, cyclopropene), which can be addressed by an inverse-electron-demand Diels-Alder (IEDDA) reaction. This reaction is cell friendly as there are no cytotoxic catalysts needed. We show the equipment of the ECM with a bioactive molecule (enzyme) and prove that the functional groups do not influence cellular behavior. Thus, this new material has great potential for use as a biomaterial, which can be individually modified in a wide range of applications.
In recent years, the development and application of decellularized extracellular matrices (ECMs) for use as biomaterials have grown rapidly. These cell-derived matrices (CDMs) represent highly bioactive and biocompatible materials consisting of a complex assembly of biomolecules. Even though CDMs mimic the natural microenvironment of cells in vivo very closely, they still lack specifically addressable functional groups, which are often required to tailor a biomaterial functionality by bioconjugation. To overcome this limitation, metabolic glycoengineering has emerged as a powerful tool to equip CDMs with chemical groups such as azides. These small chemical handles are known for their ability to undergo bioorthogonal click reactions, which represent a desirable reaction type for bioconjugation. However, ECM insolubility makes its processing very challenging. In this contribution, we isolated both the unmodified ECM and azide-modified clickECM by osmotic lysis. In a first step, these matrices were concentrated to remove excessive water from the decellularization step. Next, the hydrogel-like ECM and clickECM films were mechanically fragmentized, resulting in easy to pipette suspensions with fragment sizes ranging from 7.62 to 31.29 μm (as indicated by the mean d90 and d10 values). The biomolecular composition was not impaired as proven by immunohistochemistry. The suspensions were used for the reproducible generation of surface coatings, which proved to be homogeneous in terms of ECM fragment sizes and coating thicknesses (the mean coating thickness was found to be 33.2 ± 7.3 μm). Furthermore, they were stable against fluid-mechanical abrasion in a laminar flow cell. When primary human fibroblasts were cultured on the coated substrates, an increased bioactivity was observed. By conjugating the azides within the clickECM coatings with alkyne-coupled biotin molecules, a bioconjugation platform was obtained, where the biotin–streptavidin interaction could be used. Its applicability was demonstrated by equipping the bioactive clickECM coatings with horseradish peroxidase as a model enzyme.
Gelatin is one of the most prominent biopolymers in biomedical material research and development. It is frequently used in hybrid hydrogels, which combine the advantageous properties of bio‐based and synthetic polymers. To prevent the biological component from leaching out of the hydrogel, the biomolecules can be equipped with azides. Those groups can be used to immobilize gelatin covalently in hydrogels by the highly selective and specific azide–alkyne cycloaddition. In this contribution, we functionalized gelatin with azides at its lysine residues by diazo transfer, which offers the great advantage of only minimal side‐chain extension. Approximately 84–90% of the amino groups are modified as shown by 1H‐NMR spectroscopy, 2,4,6‐trinitrobenzenesulfonic acid assay as well as Fourier‐transform infrared spectroscopy, rheology, and the determination of the isoelectric point. Furthermore, the azido‐functional gelatin is incorporated into hydrogels based on poly(ethylene glycol) diacrylate (PEG‐DA) at different concentrations (0.6, 3.0, and 5.5%). All hydrogels were classified as noncyctotoxic with significantly enhanced cell adhesion of human fibroblasts on their surfaces compared to pure PEG‐DA hydrogels. Thus, the new gelatin derivative is found to be a very promising building block for tailoring the bioactivity of materials.
Adipose tissue is related to the development and manifestation of multiple diseases, demonstrating the importance of suitable in vitro models for research purposes. In this study, adipose tissue lobuli were explanted, cultured, and used as an adipose tissue control to evaluate in vitro generated adipose tissue models. During culture, lobule exhibited a stable weight, lactate dehydrogenase, and glycerol release over 15 days. For building up in vitro adipose tissue models, we adapted the biomaterial gelatin methacryloyl (GelMA) composition and handling to homogeneously mix and bioprint human primary mature adipocytes (MA) and adipose-derived stem cells (ASCs), respectively. Accelerated cooling of the bioink turned out to be essential for the homogeneous distribution of lipid-filled MAs in the hydrogel. Last, we compared manual and bioprinted GelMA hydrogels with MA or ASCs and the explanted lobules to evaluate the impact of the printing process and rate the models concerning the physiological reference. The viability analyses demonstrated no significant difference between the groups due to additive manufacturing. The staining of intracellular lipids and perilipin A suggest that GelMA is well suited for ASCs and MA. Therefore, we successfully constructed physiological in vitro models by bioprinting MA-containing GelMA bioinks.
Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors.
Though bioprinting is a forward-looking approach in bone tissue engineering, the development of bioinks which are on the one hand processable with the chosen printing technique, and on the other hand possess the relevant mechanical as well as osteoconductive features remains a challenge. In the present study, polymer solutions based on methacrylated gelatin and methacrylated hyaluronic acid modified with hydroxyapatite (HAp) particles (5 wt%) were prepared. Encapsulation of primary human adipose derived stem cells in the HAp-containing gels and culture for 28 d resulted in a storage moduli significantly increased to 126% ± 9.6% compared to the value on day 1 by the sole influence of the HAp. Additional use of osteogenic media components resulted in an increase of storage module up to 199% ± 27.8%. Similarly, the loss moduli was increased to 370% ± 122.1% under the influence of osteogenic media components and HAp. Those changes in rheological material characteristics indicate a distinct change in elastic and viscous hydrogel properties, and are attributed to extensive matrix production in the hydrogels by the encapsulated cells, what could also be proven by staining of bone matrix components like collagen I, fibronectin, alkaline phosphatase and osteopontin. When using the cell-laden polymer solutions as bioinks to build up relevant geometries, the ink showed excellent printability and the printed grid structure's integrity remained intact over a culture time of 28 d. Again, an intense matrix formation as well as upregulation of osteogenic markers by the encapsulated cells could be shown. In conclusion, we demonstrated that our HAp-containing bioinks and hydrogels on basis of methacrylated gelatin and hyaluronic acid are on the one hand highly suitable for the build up of relevant three-dimensional geometries with microextrusion bioprinting, and on the other hand exhibit a significant positive effect on bone matrix development and remodeling in the hydrogels, as indicated by rheological measurements and staining of bone components. This makes the developed composite hydrogels an excellent material for bone bioprinting approaches.
Due to its availability and minimal invasive harvesting human adipose tissue-derived extracellular matrix (dECM) is often used as a biomaterial in various tissue engineering and healthcare applications. Next to dECM, cell-derived ECM (cdECM) can be generated by and isolated from in vitro cultured cells. So far both types of ECM were investigated extensively toward their application as (bio)material in tissue engineering and healthcare. However, a systematic characterization and comparison of soft tissue dECM and cdECM is still missing. In this study, we characterized dECM from human adipose tissue, as well as cdECM from human adipose-derived stem cells, toward their molecular composition, structural characteristics, and biological purity. The dECM was found to exhibit higher levels of collagens and lower levels of sulfated glycosaminoglycans compared with cdECMs. Structural characteristics revealed an immature state of the fibrous part of cdECM samples. By the identified differences, we aim to support researchers in the selection of a suitable ECM-based biomaterial for their specific application and the interpretation of obtained results.
The extracellular matrix (ECM) naturally surrounds cells in humans, and therefore represents the ideal biomaterial for tissue engineering. ECM from different tissues exhibit different composition and physical characteristics. Thus, ECM provides not only physical support but also contains crucial biochemical signals that influence cell adhesion, morphology, proliferation and differentiation. Next to native ECM from mature tissue, ECM can also be obtained from the in vitro culture of cells. In this study, we aimed to highlight the supporting effect of cell-derived- ECM (cdECM) on adipogenic differentiation. ASCs were seeded on top of cdECM from ASCs (scdECM) or pre-adipocytes (acdECM). The impact of ECM on cellular activity was determined by LDH assay, WST I assay and BrdU assay. A supporting effect of cdECM substrates on adipogenic differentiation was determined by oil red O staining and subsequent quantification. Results revealed no effect of cdECM substrates on cellular activity. Regarding adipogenic differentiation a supporting effect of cdECM substrates was obtained compared to control. With these results, we confirm cdECM as a promising biomaterial for adipose tissue engineering.
In vitro cultured cells produce a complex extracellular matrix (ECM) that remains intact after decellularization. The biological complexity derived from the variety of distinct ECM molecules makes these matrices ideal candidates for biomaterials. Biomaterials with the ability to guide cell function are a topic of high interest in biomaterial development. However, these matrices lack specific addressable functional groups, which are often required for their use as a biomaterial. Due to the biological complexity of the cell-derived ECM, it is a challenge to incorporate such functional groups without affecting the integrity of the biomolecules within the ECM. The azide-alkyne cycloaddition (click reaction, Huisgen-reaction) is an efficient and specific ligation reaction that is known to be biocompatible when strained alkynes are used to avoid the use of copper (I) as a catalyst. In our work, the ubiquitous modification of a fibroblast cell-derived ECM with azides was achieved through metabolic oligosaccharide engineering by adding the azide-modified monosaccharide Ac4GalNAz (1,3,4,6 tetra-O-acetyl-N-azidoacetylgalactosamine) to the cell culture medium. The resulting azide-modified network remained intact after removing the cells by lysis and the molecular structure of the ECM proteins was unimpaired after a gentle homogenization process. The biological composition was characterized in order to show that the functionalization does not impair the complexity and integrity of the ECM. The azides within this ‘‘clickECM” could be accessed by small molecules (such as an alkyne modified fluorophore) or by surface-bound cyclooctynes to achieve a covalent coating with clickECM.
In vitro models of human adipose tissue may serve as beneficial alternatives to animal models to study basic biological processes, identify new drug targets, and as soft tissue implants. With this approach, we aimed to evaluate adipose-derived stem cells (ASC) and mature adipocytes (MA) comparatively for the application in the in vitro setup of adipose tissue constructs to imitate native adipose tissue physiology. We used human primary MAs and human ASCs, differentiated for 14 days, and encapsulated them in collagen type I hydrogels to build up a three-dimensional (3D) adipose tissue model. The maintenance of the models was analyzed after seven days based on a viability staining. Further, the expression of the adipocyte specific protein perilipin A and the release of leptin and glycerol were evaluated. Gene transcription profiles of models based on dASCs and MAs were analyzed with regard to native adipose tissue. Compared to MAs, dASCs showed an immature differentiation state. Further, gene transcription of MAs suggests a behavior closer to native tissue in terms of angiogenesis, which supports MAs as preferred cell type. In contrast to native adipose tissue, genes of de novo lipogenesis and tissue remodeling were upregulated in the in vitro attempts.
Bone homeostasis is maintained by osteoblasts (bone formation) and osteoclasts (bone resorption). While there have been numerous studies investigating mesenchymal stem cells and their potential to differentiate into osteoblasts as well as their interaction with different bone substitute materials, there is only limited knowledge concerning in vitro generated osteoclasts. Due to the increasing development of degradable bone-grafting materials and the need of sophisticated in vitro test methods, it is essential to gain deeper insight into the process of osteoclastogenesis and the resorption functionality of human osteoclasts. Therefore, we focused on the comparison of osteoclastogenesis and resorption activity on tissue culture polystyrene (TCPS) and bovine extracellular bone matrices (BMs). Cortical bone slices were used as two-dimensional (2D) substrates, whereas a thermally treated cancellous bone matrix was used for three-dimensional (3D) experiments. We isolated primary human monocytes and induced osteoclastogenesis by medium supplementation. Subsequently, the expression of the vitronectin receptor (αVβ3) and cathepsin K as well as the characteristic actin formation on TCPS and the two BMs were examined. The cell area of human osteoclasts was analyzed on TCPS and on BMs, whereas significantly larger osteoclasts could be detected on BMs. Additionally, we compared the diameter of the sealing zones with the measured diameter of the resorption pits on the BMs and revealed similar diameters of the sealing zones and the resorption pits. We conclude that using TCPS as culture substrate does not affect the expression of osteoclast-specific markers. The analysis of resorption activity can successfully be conducted on cortical as well as on cancellous bone matrices. For new in vitro test systems concerning bone resorption, we suggest the establishment of a 2D assay for high throughput screening of new degradable bone substitute materials with osteoclasts.
Completely defined co-culture of adipogenic differentiated ASCs and microvascular endothelial cells
(2018)
Vascularized adipose tissue models are in high demand as alternatives to animal models to elucidate the mechanisms of widespread diseases, screen for new drugs or assess drug safety levels. Animal-derived sera such as fetal bovine serum (FBS), which are commonly used in these models, are associated with ethical concerns, risk of contaminations and inconsistencies of their composition and impact on cells. In this study, we developed a serum-free, defined co culture medium and implemented it in an adipocyte/endothelial cell (EC) co culture model.
Human adipose-derived stem cells were differentiated under defined conditions (diffASCs) and, like human microvascular ECs (mvECs), cultured in a defined co culture medium in mono-, indirect or direct co-culture for 14 days. The defined co-culture medium was superior when compared to mono-culture media and facilitated the functional maintenance and maturation of diffASCs including perilipin A expression, lipid accumulation, and also glycerol and leptin release. The medium also allowed mvEC maintenance, confirmed by the expression of CD31 and von Willebrand factor (vWF), and by acetylated low density lipoprotein (acLDL) uptake. Thereby, mvECs showed strong dependence on EC-specific factors. Additionally, mvECs formed vascular structures in direct co-culture with diffASCs.
The completely defined co-culture system allows for the serum-free culture of adipocyte/EC co-cultures and thereby represents a valuable and ethically acceptable tool for the culture and study of vascularized adipose tissue models.
Background aims: In vitro engineered adipose tissue is in great demand to treat lost or damaged soft tissue or to screen for new drugs, among other applications.However, today most attempts depend on the use of animal-derived sera. To pave the way for the application of adipose tissue-engineered
products in clinical trials or as reliable and robust in vitro test systems, sera should be completely excluded from the production process. In this study, we aimed to develop an in vitro adipose tissue model in the absence of sera and maintain its function long-term.
Methods: Human adipose tissue-derived stem cells were expanded and characterized in a xeno- and serum-free environment. Adipogenic differentiation was induced using a completely defined medium. Developed adipocytes were maintained in a completely defined maturation medium for additional 28 days. In addition to cell-viability and adherence, adipocyte-specific markers such as perilipin A expression of leptin release were evaluated.
Results: The defined differentiation medium enhanced cell adherence and lipid
accumulation at a significant level compared with the corresponding negative control. The defined maturation medium also significantly supported cell adherence and functional adipocyte maturation during the long-term culture period.
Conclusions: The process described here enables functional adipocyte generation and maintenance without the addition fo unknown or unimal-derived constituents, achieving an important milestone in the introduction of adipose tissue engineered products into clinical trials or in vitro screening.
The establishment of adipose tissue test systems is still a major challenge in the investigation of cellular and molecular interactions responsible for the pathogenesis of inflammatory diseases involving adipose tissue. Mature adipocytes are mainly involved in these pathologies, but rarely used in vitro, due to the lack of an appropriate culture medium which inhibits dedifferentiation and maintains adipocyte functionality. In our study, we showed that Dulbecco's Modified Eagle's Medium/Ham's F-12 with 10% fetal calf serum (FCS) reported for the culture of mature adipocytes favors dedifferentiation, which was accompanied by a high glycerol release, a decreasing release of leptin, and a low expression of the adipocyte marker perilipin A, but high expression of CD73 after 21 days. Optimized media containing FCS, biotin, pantothenate, insulin, and dexamethasone decelerated the dedifferentiation process. These cells showed a lower lipolysis rate, a high level of leptin release, as well as a high expression of perilipin A. CD73-positive dedifferentiated fat cells were only found in low quantity. In this work, we showed that mature adipocytes when cultured under optimized conditions could be highly valuable for adipose tissue engineering in vitro.
Azide-bearing cell-derived extracellular matrices (“clickECMs”) have emerged as a highly exciting new class of biomaterials. They conserve substantial characteristics of the natural extracellular matrix (ECM) and offer simultaneously small abiotic functional groups that enable bioorthogonal bioconjugation reactions. Despite their attractiveness, investigation of their biomolecular composition is very challenging due to the insoluble and highly complex nature of cell-derived matrices (CDMs). Yet, thorough qualitative and quantitative analysis of the overall material composition, organisation, localisation, and distribution of typical ECM-specific biomolecules is essential for consistent advancement of CDMs and the understanding of the prospective functions of the developed biomaterial. In this study, we evaluated frequently used methods for the analysis of complex CDMs. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and (immune)histochemical staining methods in combination with several microscopic techniques were found to be highly eligible. Commercially available colorimetric protein assays turned out to deliver inaccurate information on CDMs. In contrast, we determined the nitrogen content of CDMs by elementary analysis and converted it into total protein content using conversion factors which were calculated from matching amino acid compositions. The amount of insoluble collagens was assessed based on the hydroxyproline content. The Sircol™ assay was identified as a suitable method to quantify soluble collagens while the Blyscan™ assay was found to be well-suited for the quantification of sulphated glycosaminoglycans (sGAGs). Eventually, we propose a series of suitable methods to reliably characterise the biomolecular composition of fibroblast-derived clickECM.
In vitro composed vascularized adipose tissue is and will continue to be in great demand e.g. for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Up to date, the lack of adequate culture conditions, mainly a culture medium, decelerates further achievements. In our study, we evaluated the influence of epidermal growth factor (EGF) and hydrocortisone (HC), often supplemented in endothelial cell (EC) specific media, on the co-culture of adipogenic differentiated adipose derived stem cells (ASCs) and microvascular endothelial cells (mvECs). In ASCs, EGF and HC are thought to inhibit adipogenic differentiation and have lipolytic activities. Our results showed that in indirect co-culture for 14 days, adipogenic differentiated ASCs further incorporated lipids and partly gained an univacuolar morphology when kept in media with low levels of EGF and HC. In media with high EGF and HC levels, cells did not incorporate further lipids, on the contrary, cells without lipid droplets appeared. Glycerol release, to measure lipolysis, also increased with elevated amounts of EGF and HC in the culture medium. Adipogenic differentiated ASCs were able to release leptin in all setups. MvECs were functional and expressed the cell specific markers, CD31 and von Willebrand factor (vWF), independent of the EGF and HC content as long as further EC specific factors were present. Taken together, our study demonstrates that adipogenic differentiated ASCs can be successfully co-cultured with mvECs in a culture medium containing low or no amounts of EGF and HC, as long as further endothelial cell and adipocyte specific factors are available.
Due to its wide-ranging endocrine functions, adipose tissue influences the whole body’s metabolism. Engineering long-term stable and functional human adipose tissue is still challenging due to the limited availability of suitable biomaterials and adequate cell maturation. We used gellan gum (GG) to create manual and bioprinted adipose tissue models because of its similarities to the native extracellular matrix and its easily tunable properties. Gellan gum itself was neither toxic nor monocyte activating. The resulting hydrogels exhibited suitable viscoelastic properties for soft tissues and were stable for 98 days in vitro. Encapsulated human primary adipose-derived stem cells (ASCs) were adipogenically differentiated for 14 days and matured for an additional 84 days. Live-dead staining showed that encapsulated cells stayed viable until day 98, while intracellular lipid staining showed an increase over time and a differentiation rate of 76% between days 28 and 56. After 4 weeks of culture, adipocytes had a univacuolar morphology, expressed perilipin A, and secreted up to 73% more leptin. After bioprinting establishment, we demonstrated that the cells in printed hydrogels had high cell viability and exhibited an adipogenic phenotype and function. In summary, GG-based adipose tissue models show long-term stability and allow ASCs maturation into functional, univacuolar adipocytes.
Natural extracellular matrix (ECM) represents an ideal biomaterial for tissue engineering and regenerative medicine approaches. For further functionalization, there is a need for specific addressable functional groups within this biomaterial. Metabolic glycoengineering (MGE) provides a technique to incorporate modified monosaccharide derivatives into the ECM during their assembly, which was shown by us earlier for the production of a modified fibroblast-derived dermal ECM.
Highly viscous bioinks offer great advantages for the three-dimensional fabrication of cell-laden constructs by microextrusion printing. However, no standardised method of mixing a high viscosity biomaterial ink and a cell suspension has been established so far, leading to non-reproducible printing results. A novel method for the homogeneous and reproducible mixing of the two components using a mixing unit connecting two syringes is developed and investigated. Several static mixing units, based on established mixing designs, were adapted and their functionality was determined by analysing specific features of the resulting bioink. As a model system, we selected a highly viscous ink consisting of fresh frozen human blood plasma, alginate, and methylcellulose, and a cell suspension containing immortalized human mesenchymal stem cells. This bioink is crosslinked after fabrication. A pre-crosslinked gellan gum-based bioink providing a different extrusion behaviour was introduced to validate the conclusions drawn from the model system. For characterisation, bioink from different zones within the mixing device was analysed by measurement of its viscosity, shape fidelity after printing and visual homogeneity. When taking all three parameters into account, a comprehensive and reliable comparison of the mixing quality was possible. In comparison to the established method of manual mixing inside a beaker using a spatula, a significantly higher proportion of viable cells was detected directly after mixing and plotting for both bioinks when the mixing unit was used. A screw-like mixing unit, termed “HighVisc”, was found to result in a homogenous bioink after a low number of mixing cycles while achieving high cell viability rates.
Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146 cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146 cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146 cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146⁺ perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries.
In bioprinting approaches, the choice of bioink plays an important role since it must be processable with the selected printing method, but also cytocompatible and biofunctional. Therefore, a crosslinkable gelatin-based ink was modified with hydroxyapatite (HAp) particles, representing the composite buildup of natural bone. The inks’ viscosity was significantly increased by the addition of HAp, making the material processable with extrusion-based methods. The storage moduli of the formed hydrogels rose significantly, depicting improved mechanical properties. A cytocompatibility assay revealed suitable ranges for photoinitiator and HAp concentrations. As a proof of concept, the modified ink was printed together with cells, yielding stable three-dimensional constructs containing a homogeneously distributed mineralization and viable cells.
The coculture of osteogenic and angiogenic cells and the resulting paracrine signaling via soluble factors are supposed to be crucial for successfully engineering vascularized bone tissue equivalents. In this study, a coculture system combining primary human adiposederived stem cells (hASCs) and primary human dermal microvascular endothelial cells (HDMECs) within two types of hydrogels based on methacryloyl‐modified gelatin (GM) as three‐dimensional scaffolds was examined for its support of tissue specific cell functions. HDMECs, together with hASCs as supporting cells, were encapsulated in soft GM gels and were indirectly cocultured with hASCs encapsulated in stiffer GM hydrogels additionally containing methacrylate‐modified hyaluronic acid and hydroxyapatite particles. After 14 days, the hASC in the stiffer gels (constituting the “bone gels”) expressed matrix proteins like collagen type I and fibronectin, as well as bone‐specific proteins osteopontin and alkaline phosphatase. After 14 days of coculture with HDMEC‐laden hydrogels, the viscoelastic properties of the bone gels were significantly higher compared with the gels in monoculture. Within the soft vascularization gels, the formed capillary‐like networks were significantly longer after 14 days of coculture than the structures in the control gels. In addition, the stability as well as the complexity of the vascular networks was significantly increased by coculture. We discussed and concluded that osteogenic and angiogenic signals from the culture media as well as from cocultured cell types, and tissue‐specific hydrogel composition all contribute to stimulate the interplay between osteogenesis and angiogenesis in vitro and are a basis for engineering vascularized bone.
Improvement of a three-layered in vitro skin model for topical application of irritating substances
(2020)
In the field of skin tissue engineering, the development of physiologically relevant in vitro skin models comprising all skin layers, namely epidermis, dermis, and subcutis, is a great challenge. Increasing regulatory requirements and the ban on animal experiments for substance testing demand the development of reliable and in vivo-like test systems, which enable high-throughput screening of substances. However, the reproducibility and applicability of in vitro testing has so far been insufficient due to fibroblast-mediated contraction. To overcome this pitfall, an advanced 3-layered skin model was developed. While the epidermis of standard skin models showed an 80% contraction, the initial epidermal area of our advanced skin models was maintained. The improved barrier function of the advanced models was quantified by an indirect barrier function test and a permeability assay. Histochemical and immunofluorescence staining of the advanced model showed well-defined epidermal layers, a dermal part with distributed human dermal fibroblasts and a subcutis with round-shaped adipocytes. The successful response of these advanced 3-layered models for skin irritation testing demonstrated the suitability as an in vitro model for these clinical tests: only the advanced model classified irritative and non-irritative substances correctly. These results indicate that the advanced set up of the 3-layered in vitro skin model maintains skin barrier function and therefore makes them more suitable for irritation testing.
Sunlight has various effects on human health. Several important metabolic processes are only enabled by sunlight. But longtime sun bathing and extended outdoor activities can cause skin irritation, inflammation or even skin cancer due to high radiation dose. We developed in vitro skin models of different complexity to investigate UV-light associated skin damage. Substances and their phototoxic, sun protective or photo-sensitizing potential can be analyzed to prevent white skin cancer.
The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used.
Large, deep full-thickness skin wounds from high-graded burns or trauma are not able to reepithelialize sufficiently, resulting in scar formation, mobility limitations, and cosmetic deformities. In this study, in vitro-constructed tissue replacements are needed. Furthermore, such full-skin equivalents would be helpful as in vivo-like test systems for toxicity, cosmetic, and pharmaceutical testing. Up to date, no skin equivalent is available containing the underlying subcutaneous fatty tissue. In this study, we composed a full-skin equivalent and evaluated three different media for the coculture of mature adipocytes, fibroblasts, and keratinocytes. Therefore, adipocyte medium was supplemented with ascorbyl-2-phosphate and calcium chloride, which are important for successful epidermal stratification (Air medium). This medium was further supplemented with two commercially available factor combinations often used for the in vitro culture of keratinocytes (Air-HKGS and Air- KGM medium). We showed that in all media, keratinocytes differentiated successfully to build a stratified epidermal layer and expressed cytokeratin 10 and 14. Perilipin A-positive adipocytes could be found in all tissue models for up to 14 days, whereas adipocytes in the Air-HKGS and Air-KGM medium seemed to be smaller. Adipocytes in all tissue models were able to release adipocyte-specific factors, whereas the supplementation of keratinocyte-specific factors had a slightly negative effect on adipocyte functionality. The permeability of the epidermis of all models was comparable since they were able to withstand a deep penetration of cytotoxic Triton X in the same manner. Taken together, we were able to compose functional three-layered fullskin equivalents by using the Air medium.
Human adipose-derived stem cells (hASCs) have become an important cell source for the use in tissue engineering and other medical applications. Not every biomaterial is suitable for human cell culture and requires surface modifications to enable cell adhesion and proliferation. Our hypothesis is that chemical surface modifications introduced by low-discharge plasma enhance the adhesion and proliferation of hASCs. Polystyrene (PS) surfaces were modified either by ammonia (NH3), carbon dioxide (CO2) or acrylic acid (AAc) plasma. The results show that the initial cell adhesion is significantly higher on all modified surfaces than on unmodified material as evaluated by bright field microscopy, live/dead staining, total DNA amount and scanning electron microscopy. The formation of focal adhesions was well pronounced on the Tissue Culture PS, NH3-, and CO2 plasma modified samples. The number of matured fibrillar adhesions was significantly higher on NH3 plasmamodified surfaces than on all other surfaces. Our study validates the suitability of chemical plasma activation and represents a method to enhance hASCs adhesion and improved cell expansion. All chemical modification promoted hASCs adhesion and can therefore be used for the modification of different scaffold materials whereby NH3-plasma modified surfaces resulted in the best outcome concerning hASCs adhesion and proliferation.
Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering
(2016)
In vitro engineering of autologous fatty tissue constructs is still a major challenge for the treatment of congenital deformities, tumor resections or high-graded burns. In this study, we evaluated the suitability of photo-crosslinkable methacrylated gelatin (GM) and mature adipocytes as components for the composition of three-dimensional fatty tissue constructs. Cytocompatibility evaluations of the GM and the photoinitiator Lithium phenyl-2,4,6 trimethylbenzoylphosphinate (LAP) showed no cytotoxicity in the relevant range of concentrations. Matrix stiffness of cell-laden hydrogels was adjusted to native fatty tissue by tuning the degree of crosslinking and was shown to be comparable to that of native fatty tissue. Mature adipocytes were then cultured for 14 days within the GM resulting in a fatty tissue construct loaded with viable cells expressing cell markers perilipin A and laminin. This work demonstrates that mature adipocytes are a highly valuable cell source for the composition of fatty tissue equivalents in vitro. Photo-crosslinkable methacrylated gelatin is an excellent tissue scaffold and a promising bioink for new printing techniques due to its biocompatibility and tunable properties.
Thin radio-frequency magnetron sputter deposited nano-hydroxyapatite (HA) films were prepared on the surface of a Fe-tricalcium phosphate (Fe-TCP) bioceramic composite, which was obtained using a conventional powder injection moulding technique. The obtained nano-hydroxyapatite coated Fe-TCP biocomposites (nano HA-Fe-TCP) were studied with respect to their chemical and phase composition, surface morphology, water contact angle, surface free energy and hysteresis. The deposition process resulted in a homogeneous, single-phase HA coating. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells (hMSCs) was studied using biological short-term tests in vitro. The surface of the uncoated Fe-TCP bioceramic composite showed an initial cell attachment after 24 h of seeding, but adhesion, proliferation and growth did not persist during 14 days of culture.However, the HA-Fe-TCP surfaces allowed cell adhesion, and proliferation during 14 days. The deposition of the nano-HA films on the Fe-TCP surface resulted in higher surface energy, improved hydrophilicity and biocompatibility compared with the surface of the uncoated Fe-TCP. Furthermore, it is suggested that an increase in the polar component of the surface energy was responsible for the enhanced cell adhesion and proliferation in the case of the nano-HA Fe-TCP biocomposites.
New approaches to respiratory assist: bioengineering an ambulatory, miniaturized bioartificial lung
(2019)
Although state-of-the-art treatments of respiratory failure clearly have made some progress in terms of survival in patients suffering from severe respiratory system disorders, such as acute respiratory distress syndrome (ARDS), they failed to significantly improve the quality of life in patients with acute or chronic lung failure, including severe acute exacerbations of chronic obstructive pulmonary disease or ARDS as well. Limitations of standard treatment modalities, which largely rely on conventional mechanical ventilation, emphasize the urgent, unmet clinical need for developing novel(bio)artificial respiratory assist devices that provide extracorporeal gas exchange with a focus on direct extracorporeal CO2 removal from the blood. In this review, we discuss some of the novel concepts and critical prerequisites for such respiratory lung assist devices that can be used with an adequate safety profile, in the intensive care setting, as well as for long-term domiciliary therapy in patients with chronic ventilatory failure. Specifically, we describe some of the pivotal steps, such as device miniaturization, passivation of the blood-contacting surfaces by chemical surface modifications, or endothelial cell seeding, all of which are required for converting current lung assist devices into ambulatory lung assist device for long-term use in critically ill patients. Finally, we also discuss some of the risks and challenges for the long-term use of ambulatory miniaturized bioartificial lungs.
Bone remodeling can be mimicked in vitro by co-culture models. Based on bone cells, such co-cultures help to study synergistic morphological changes and the impact of materials and applied substances. Hence, we examined the formation of osteoclasts on bovine bone materials to prove the bone resorption functionality of the osteoclasts in three different co-culture set-ups using human monocytes (hMCs) and (I) human mesenchymal stem cells (hMSCs), (II) osteogenic differentiated hMSCs (hOBs), and (III) hOBs in addition of soluble monocyte-colony stimulating factor (M CSF) and cytokine receptor activator of NFkB ligand (RANKL).We detected osteoclast-specific actin morphology, as well as the expression of cathepsin K and CD51/61 in single cells in set-up II and in numerous cells in set-up III. Resorption pits on bone material as characteristic proof of functional osteoclasts were not found in set-up I and II, but we detected such resorption pits in set–up III. We conclude in co culture models without M-CSF and RANKL that monocytes can differentiate into osteoclasts that show the characteristic actin structures and protein expression. However, to receive functional bone resorbing osteoclasts in vitro, the addition of M-CSF and RANKL is needed. Moreover, we suggest the use of bone or bone-like materials for future studies evaluating osteoclastogenesis.
The world population is growing and alternative ways of satisfying the increasing demand for meat are being explored, such as using animal cells for the fabrication of cultured meat. Edible biomaterials are required as supporting structures. Hence, we chose agarose, gellan and a xanthan-locust bean gum blend (XLB) as support materials with pea and soy protein additives and analyzed them regarding material properties and biocompatibility. We successfully built stable hydrogels containing up to 1% pea or soy protein. Higher amounts of protein resulted in poor handling properties and unstable gels. The gelation temperature range for agarose and gellan blends is between 23–30 °C, but for XLB blends it is above 55 °C. A change in viscosity and a decrease in the swelling behavior was observed in the polysaccharide-protein gels compared to the pure polysaccharide gels. None of the leachates of the investigated materials had cytotoxic effects on the myoblast cell line C2C12. All polysaccharide-protein blends evaluated turned out as potential candidates for cultured meat. For cell-laden gels, the gellan blends were the most suitable in terms of processing and uniform distribution of cells, followed by agarose blends, whereas no stable cell-laden gels could be formed with XLB blends.
In the current study the in vitro outcome of a degradable magnesium alloy (AZ91D) and standard titanium modified by nanostructured-hydroxyapatite (n-HA) coatings concerning cell adhesion and osteogenic differentiation was investigated by direct cell culture. The n-HA modification was prepared via radio-frequency magnetron sputtering deposition and proven by field emission scanning electron microscopy and X-ray powder diffraction patterns revealing a homogenous surface coating. Human mesenchymal stem cell (hMSCs) adhesion was examined after one and 14 days displaying an enhanced initial cell adhesion on the n-HA modified samples. The osteogenic lineage commitment of the cells was determined by alkaline phosphatase (ALP) quantification. On day one n-HA coated AZ91D exhibited a comparable ALP expression to standard tissue culture polystyrene samples. However, after 14 days solely little DNA and ALP amounts were measurable on n-HA coated AZ91D due to the lack of adherent cells. Titanium displayed excellent cell adhesion properties and ALP was detectable after 14 days. An increased pH of the culture was measured for AZ91D as well as for n-HA coated AZ91D. We conclude that n-HA modification improves initial cell attachment on AZ91D within the first 24 h. However, the effect does not ersist for 14 days in in vitro conditions.
Engineering of large vascularized adipose tissue constructs is still a challenge for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Communication between mature adipocytes and endothelial cells is important for homeostasis and the maintenance of adipose tissue mass but, to date, is mainly neglected in tissue engineering strategies. Thus, new coculture strategies are needed to integrate adipocytes and endothelial cells successfully into a functional construct. This review focuses on the cross-talk of mature adipocytes and endothelial cells and considers their influence on fatty acid metabolism and vascular tone. In addition, the properties and challenges with regard to these two cell types for vascularized tissue engineering are highlighted.