Refine
Document Type
- Conference proceeding (58)
- Journal article (6)
- Book chapter (6)
- Book (1)
Is part of the Bibliography
- yes (71)
Institute
- Informatik (69)
- ESB Business School (2)
Publisher
- Springer (33)
- IEEE (8)
- Gesellschaft für Informatik (7)
- University of Hawai'i at Manoa (4)
- Elsevier (3)
- Association for Information Systems (2)
- IGI Global (2)
- RWTH (2)
- RWTH Aachen (2)
- SCITEPRESS (2)
Digital assistants like Alexa, Google Assistant or Siri have seen a large adoption over the past years. Using artificial intelligence (AI) technologies, they provide a vocal interface to physical devices as well as to digital services and have spurred an entire new ecosystem. This comprises the big tech companies themselves, but also a strongly growing community of developers that make these functionalities available via digital platforms. At present, only few research is available to understand the structure and the value creation logic of these AI-based assistant platforms and their ecosystem. This research adopts ecosystem intelligence to shed light on their structure and dynamics. It combines existing data collection methods with an automated approach that proves useful in deriving a network-based conceptual model of Amazon’s Alexa assistant platform and ecosystem. It shows that skills are a key unit of modularity in this ecosystem, which is linked to other elements such as service, data, and money flows. It also suggests that the topology of the Alexa ecosystem may be described using the criteria reflexivity, symmetry, variance, strength, and centrality of the skill coactivations. Finally, it identifies three ways to create and capture value on AI-based assistant platforms. Surprisingly only a few skills use a transactional business model by selling services and goods but many skills are complementary and provide information, configuration, and control services for other skill provider products and services. These findings provide new insights into the highly relevant ecosystems of AI-based assistant platforms, which might serve enterprises in developing their strategies in these ecosystems. They might also pave the way to a faster, data-driven approach for ecosystem intelligence.
As an important general-purpose technology, Artificial Intelligence (AI) enjoys broad attention in numerous industries and for many use cases due to recent technological advancements in areas such as image detection, translation, and decision support. Many companies expect to gain a competitive advantage from AI, and the solutions for AI-enabled processes, products, and business models are continuously becoming more sophisticated. AI-based assistants are an important and particularly innovative field in this development.
Artificial Intelligence (AI) has received much attention due to the recent progress in several technological areas such as image detection, translation, and decision support. Established businesses and many start-up businesses are eagerly discussing how they can gain a competitive advantage from complementing their products, services and processes with AI. In fact, based on the research in the AI domain since several decades, a broad variety of promising application fields were suggested where AI might add business value. Meanwhile, applications are not limited to simple structured problems, but even applications higher complexities are feasible, which require higher levels of “intelligence”. To avoid discussions on the ambivalent notion of “intelligence”, it shall refer to tasks involving perception, processing, action and learning. Many applications are possible along these activities, in particular a user’s interaction via natural language.
Assistant platforms are becoming a key element for the business model of many companies. They have evolved from assistance systems that provide support when using information (or other) systems to platforms in their own. Alexa, Cortana or Siri may be used with literally thousands of services. From this background, this paper develops the notion of assistant platforms and elaborates a conceptual model that supports businesses in developing appropriate strategies. The model consists of three main building blocks, an architecture that depicts the components as well as the possible layers of an assistant platform, the mechanism that determines the value creation on assistant platforms, and the ecosystem with its network effects, which emerge from the multi-sided nature of assistant platforms. The model has been derived from a literature review and is illustrated with examples of existing assistant platforms. Its main purpose is to advance the understanding of assistant platforms and to trigger future research.
Current advances in Artificial Intelligence (AI) combined with other digitalization efforts are changing the role of technology in service ecosystems. Human-centered intelligent systems and services are the target of many current digitalization efforts and part of a massive digital transformation based on digital technologies. Artificial intelligence, in particular, is having a powerful impact on new opportunities for shared value creation and the development of smart service ecosystems. Motivated by experiences and observations from digitalization projects, this paper presents new methodological experiences from academia and practice on a joint view of digital strategy and architecture of intelligent service ecosystems and explores the impact of digitalization based on real case study results. Digital enterprise architecture models serve as an integral representation of business, information, and technology perspectives of intelligent service-based enterprise systems to support management and development. This paper focuses on the novel aspect of closely aligned digital strategy and architecture models for intelligent service ecosystems and highlights the fundamental business mechanism of AI-based value creation, the corresponding digital architecture, and management models. We present key strategy-oriented architecture model perspectives for intelligent systems.
Potentials of smart contracts-based disintermediation in additive manufacturing supply chains
(2019)
We investigate which potentials are created by using smart contracts for disintermediation in supply chains for additive manufacturing. Using a qualitative, critical realist research approach, we analyzed three case studies with companies active in additive manufactures. Based on interviews with experts from these companies, we could identify eight key requirements for disintermediation and associate four potentials of smart contracts-based disintermediation.
New business opportunities appeared using the potential of the Internet and related digital technologies, like the Internet of Things, services computing, artificial intelligence, cloud, edge, and fog computing, social networks, big data with analytics, mobile systems, collaboration networks, and cyber-physical systems. Companies are transforming their strategy and product base, as well as their culture, processes and information systems to adopt digital transformation or to approach for digital leadership. Digitalization fosters the development of IT environments with many rather small and distributed structures, like the Internet of Things, Microservices, or other micro-granular elements. Digitalization has a substantial impact for architecting the open and complex world of highly distributed digital servcies and products, as part of a new digital enterprise architecture, which structure and direct service-dominant digital products and services. The present research paper investigates mechanisms for supporting the evolution of digital enterprise architectures with user-friendly methods and instruments of interaction, visualization, and intelligent decision management during the exploration of multiple and interconnected perspectives by an architecture management cockpit.
Presently, many companies are transforming their strategy and product base, as well as their culture, processes and information systems to become more digital or to approach for a digital leadership. In the last years new business opportunities appeared using the potential of the Internet and related digital technologies, like Internet of Things, services computing, cloud computing, edge and fog computing, social networks, big data with analytics, mobile systems, collaboration networks, and cyber physical systems. Digitization fosters the development of IT environments with many rather small and distributed structures, like the Internet of Things, Microservices, or other micro-granular elements. This has a strong impact for architecting digital services and products. The change from a closed-world modeling perspective to more flexible open-world composition and evolution of micro-granular system architectures defines the moving context for adaptable systems. We are focusing on a continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, as part of a new digital enterprise architecture for service dominant digital products.
Enterprises are transforming their strategy, culture, processes, and their information systems to enlarge their digitalization efforts or to approach for digital leadership. The digital transformation profoundly disrupts existing enterprises and economies. In current times, a lot of new business opportunities appeared using the potential of the Internet and related digital technologies: The Internet of Things, services computing, cloud computing, artificial intelligence, big data with analytics, mobile systems, collaboration networks, and cyber physical systems. Digitization fosters the development of IT environments with many rather small and distributed structures, like the Internet of Things, microservices, or other micro-granular elements. Architecting micro-granular structures have a substantial impact on architecting digital services and products. The change from a closed-world modeling perspective to more flexible Open World of living software and system architectures defines the context for flexible and evolutionary software approaches, which are essential to enable the digital transformation. In this paper, we are revealing multiple perspectives of digital enterprise architecture and decisions to effectively support value and service oriented software systems for intelligent digital services and products.
Digitalization of products and services commonly causes substantial changes in business models, operations, organization structures and IT infrastructures of enterprises. Motivated by experiences and observations from digitalization projects, the paper investigates the effects of digitalization on enterprise architectures (EA). EA models serve as representation of business, information system and technical aspects of an enterprise to support management and development. By comparing EA models before and after digitalization, the paper analyzes the kinds of changes visible in the EA model. The most important finding is that newly created digitized products and the associated (product)- and enterprise architecture are no longer properly integrated into the overall architecture and even exist in parallel. Thus, the focus of this work is on showing these parallel architectures and proposing derivations for a better integration.