Refine
Document Type
- Journal article (37)
- Book chapter (2)
Is part of the Bibliography
- yes (39)
Institute
- Life Sciences (37)
- Informatik (2)
Publisher
- De Gruyter (15)
- Macmillan Publishers Limited (3)
- ACS (2)
- CRC Press (2)
- Elsevier (2)
- MDPI (2)
- Nature Publishing Group (2)
- Royal Society of Chemistry (2)
- de Gruyter (2)
- Beilstein-Institut zur Förderung der Chemischen Wissenschaften (1)
The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials–cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.
It is well established that the mechanical environment influences cell functions in health and disease. Here, we address how the mechanical environment influences tumor growth, in particular, the shape of solid tumors. In an in vitro tumor model, which isolates mechanical interactions between cancer tumor cells and a hydrogel, we find that tumors grow as ellipsoids, resembling the same, oft-reported observation of in vivo tumors. Specifically, an oblate ellipsoidal tumor shape robustly occurs when the tumors grow in hydrogels that are stiffer than the tumors, but when they grow in more compliant hydrogels they remain closer to spherical in shape. Using large scale, nonlinear elasticity computations we Show that the oblate ellipsoidal shape minimizes the elastic free energy of the tumor-hydrogel system. Having eliminated a number of other candidate explanations, we hypothesize that minimization of the elastic free energy is the reason for predominance of the experimentally observed ellipsoidal shape. This result may hold significance for explaining the shape progressio.
Poly(dimethylsiloxane) can be covalently coated with ultrathin NCO-sP(EO-stat-PO) hydrogel layers which permit covalent binding of cell adhesive moieties, while minimizing unspecific cell adhesion on non-functionalized areas. We applied long term uniaxial cyclic tensile strain (CTS) and revealed (a) the preservation of protein and cell-repellent properties of the NCO-sP(EO-stat-PO) coating and (b) the stability and bioactivity of a covalently bound fibronectin (FN) line pattern. We studied the adhesion of human dermal fibroblast (HDFs) on non-modified NCO-sP(EO-stat-PO) coatings and on the FN. HDFs adhered to FN and oriented their cell bodies and actin fibers along the FN lines independently of the direction of CTS. This mechanical long term stability of the bioactive, patterned surface allows unraveling biomechanical stimuli for cellular signaling and behavior to understand physiological and pathological cell phenomenon. Additionally, it allows for the application in wound healing assays, tissue engineering, and implant development demanding spatial control over specific cell adhesion.
Increasing number of studies are focused on how adherent cells respond, in vitro, to different properties of a material. Typical properties are the surface chemistry, topographical cues (at the nano- and micro-scale) of the surface, and the substrate stiffness. Cell Response studies are of importance for designing new biomaterials with applications in cell culture technologies, regenerative medicine, or for medical implants. However, only very few studies take the cell age factor, respectively the donor age, into account. In this work, we tested two types of human vascular cells (smooth muscle and endothelial cells) from old and young donors on (a) micro-structured surfaces made of pol (dimethylsiloxane) or on (b) flat polyacrylamide hydrogels with varying stiffnesses. These experiments reveal age-dependent and cell typedependent differences in the cell response to the topography and stiffness, and may establish the Basis for further studies focusing on cell age-dependent responses.
The spreading area of cells has been shown to play a central role in the determination of cell fate and tissue morphogenesis; however, a clear understanding of how spread cell area is determined is still lacking. The observation that cell area and force generally increase with substrate rigidity suggests that cell area is dictated mechanically, by means of a force-balance between the cell and the substrate. A simple mechanical model, corroborated by experimental measurements of cell area and force is presented to analyze the temporal force balance between the cell and the substrate during spreading. The cell is modeled as a thin elastic disc that is actively pulled by lamellipodia protrusions at the cell front. The essential molecular mechanisms of the motor activity at the cell front, including, actin polymerization, adhesion kinetics, and the actin retrograde flow, are accounted for and used to predict the dynamics of cell spreading on elastic substrates; simple, closed-form expressions for the evolution of cell size and force are derived. Time-resolved, traction force microscopy, combined with measurements of cell area are performed to investigate the simultaneous variations of cell size and force. We find that cell area and force increase simultaneously during spreading but the force develops with an apparent delay relative to the increase in cell area. We demonstrate that this may reflect the strain-stiffening property of the cytoskeleton. We further demonstrate that the radial cell force is a concave function of spreading speed and that this may reflect the strengthening of cell–substrate adhesions during spreading.
Soft lithography, a tool widely applied in biology and life sciences with numerous applications, uses the soft molding of photolithography-generated master structures by polymers. The central part of a photolithography set-up is a mask-aligner mostly based on a high-pressure mercury lamp as an ultraviolet (UV) light source. This type of light source requires a high level of maintenance and shows a decreasing intensity over its lifetime, influencing the lithography outcome. In this paper, we present a low-cost, bench-top photolithography tool based on ninety-eight 375 nm light-emitting diodes (LEDs). With approx. 10 W, our presented lithography set-up requires only a fraction of the energy of a conventional lamp, the LEDs have a guaranteed lifetime of 1000 h, which becomes noticeable by at least 2.5 to 15 times more exposure cycles compared to a standard light source and with costs less than 850 C it is very affordable. Such a set-up is not only attractive to small academic and industrial fabrication facilities who want to enable work with the technology of photolithography and cannot afford a conventional set-up, but also microfluidic teaching laboratories and microfluidic research and development laboratories, in general, could benefit from this cost-effective alternative. With our self-built photolithography system, we were able to produce structures from 6 μm to 50 μm in height and 10 μm to 200 μm in width. As an optional feature, we present a scaled-down laminar flow hood to enable a dust-free working environment for the photolithography process.
Focal adhesion clusters (FAC) are dynamic and complex structures that help cells to sense physicochemical properties of their environment. Research in biomaterials, cell adhesion or cell migration often involves the visualization of FAC by fluorescence staining and microscopy, which necessitates quantitative analysis of FAC and other cell features in microscopy images using image processing. Fluorescence microscopy images of human umbilical vein endothelial cells (HUVEC) obtained at 63x magnification were quantitatively analysed using ImageJ software. A generalised algorithm for selective segmentation and morphological analysis of FAC, nucleus and cell morphology is implemented. Further, a method for discrimination of FACnear the nucleus and around the periphery is implemented using masks. Our algorithm is able to effectively quantify different morphological characteristics of cell components and shows a high sensitivity and specificity while providing a modular software implementation.
In vivo, cells encounter different physical and chemical signals in the extracellular matrix (ECM) which regulate their behavior. Examples of these signals are micro- and nanometer-sized features, the rigidity, and the chemical composition of the ECM. The study of cell responses to such cues is important to understand complex cell functions, some diseases, and is basis for the development of new biomaterials for applications in medical implants or regenerative medicine. Therefore, the development of new methods for surface modifications with controlled physical and chemical features is crucial. In this work, we report a new combination of micelle nanolithography (BCML) and soft micro-lithography, for the production of polyethylene glycol (PEG) hydrogels, with a micro-grooved surface and decoration with hexagonally precisely arranged gold nanoparticles (AU NPs). The Au-NPs are used for binding adhesive ligands in a well-defined density. First tests were performed by culturing human fibroblasts on the gels. Adhesion and alignment of the cells along the parallel grooves of the surface were investigated. The substrates could provide a new platform for studying cell contact guidance by micro structures, and may enable a more precise control of cell behavior by nanometrically controlled surface functionalization.
The physiology of vascular cells depends on stimulating mechanical forces caused by pulsatile flow. Thus, mechano-transduction processes and responses of primary human endothelial cells (ECs) and smooth muscle cells (SMCs) have been studied to reveal cell-type specific differences which may contribute to vascular tissue integrity. Here, we investigate the dynamic reorientation response of ECs and SMCs cultured on elastic membranes over a range of stretch frequencies from 0.01 to 1 Hz. ECs and SMCs show different cell shape adaptation responses (reorientation) dependent on the frequency. ECs reveal a specific threshold frequency (0.01 Hz) below which no responses is detectable while the threshold frequency for SMCs could not be determined and is speculated to be above 1 Hz. Interestingly, the reorganization of the actin cytoskeleton and focal adhesions system, as well as changes in the focal adhesion area, can be observed for both cell types and is dependent on the frequency. RhoA and Rac1 activities are increased for ECs but not for SMCs upon application of a uniaxial cyclic tensile strain. Analysis of membrane protrusions revealed that the spatial protrusion activity of ECs and SMCs is independent of the application of a uniaxial cyclic tensile strain of 1 Hz while the total number of protrusions is increased for ECs only. Our study indicates differences in the reorientation response and the reaction times of the two cell types in dependence of the stretching frequency, with matching data for actin cytoskeleton, focal adhesion realignment, RhoA/Rac1 activities, and membrane protrusion activity. These are promising results which may allow cell-type specific activation of vascular cells by frequency selective mechanical stretching. This specific activation of different vascular cell types might be helpful in improving strategies in regenerative medicine.