Refine
Document Type
- Journal article (37)
- Book chapter (2)
Is part of the Bibliography
- yes (39)
Institute
- Life Sciences (37)
- Informatik (2)
Publisher
- De Gruyter (17)
- Macmillan Publishers Limited (3)
- Springer (3)
- American Chemical Society (2)
- CRC Press (2)
- Elsevier (2)
- MDPI (2)
- Royal Society of Chemistry (2)
- Wiley (2)
- Beilstein-Institut zur Förderung der Chemischen Wissenschaften (1)
In vivo, cells encounter different physical and chemical signals in the extracellular matrix (ECM) which regulate their behavior. Examples of these signals are micro- and nanometer-sized features, the rigidity, and the chemical composition of the ECM. The study of cell responses to such cues is important to understand complex cell functions, some diseases, and is basis for the development of new biomaterials for applications in medical implants or regenerative medicine. Therefore, the development of new methods for surface modifications with controlled physical and chemical features is crucial. In this work, we report a new combination of micelle nanolithography (BCML) and soft micro-lithography, for the production of polyethylene glycol (PEG) hydrogels, with a micro-grooved surface and decoration with hexagonally precisely arranged gold nanoparticles (AU NPs). The Au-NPs are used for binding adhesive ligands in a well-defined density. First tests were performed by culturing human fibroblasts on the gels. Adhesion and alignment of the cells along the parallel grooves of the surface were investigated. The substrates could provide a new platform for studying cell contact guidance by micro structures, and may enable a more precise control of cell behavior by nanometrically controlled surface functionalization.
It is well established that the mechanical environment influences cell functions in health and disease. Here, we address how the mechanical environment influences tumor growth, in particular, the shape of solid tumors. In an in vitro tumor model, which isolates mechanical interactions between cancer tumor cells and a hydrogel, we find that tumors grow as ellipsoids, resembling the same, oft-reported observation of in vivo tumors. Specifically, an oblate ellipsoidal tumor shape robustly occurs when the tumors grow in hydrogels that are stiffer than the tumors, but when they grow in more compliant hydrogels they remain closer to spherical in shape. Using large scale, nonlinear elasticity computations we Show that the oblate ellipsoidal shape minimizes the elastic free energy of the tumor-hydrogel system. Having eliminated a number of other candidate explanations, we hypothesize that minimization of the elastic free energy is the reason for predominance of the experimentally observed ellipsoidal shape. This result may hold significance for explaining the shape progressio.
The spreading area of cells has been shown to play a central role in the determination of cell fate and tissue morphogenesis; however, a clear understanding of how spread cell area is determined is still lacking. The observation that cell area and force generally increase with substrate rigidity suggests that cell area is dictated mechanically, by means of a force-balance between the cell and the substrate. A simple mechanical model, corroborated by experimental measurements of cell area and force is presented to analyze the temporal force balance between the cell and the substrate during spreading. The cell is modeled as a thin elastic disc that is actively pulled by lamellipodia protrusions at the cell front. The essential molecular mechanisms of the motor activity at the cell front, including, actin polymerization, adhesion kinetics, and the actin retrograde flow, are accounted for and used to predict the dynamics of cell spreading on elastic substrates; simple, closed-form expressions for the evolution of cell size and force are derived. Time-resolved, traction force microscopy, combined with measurements of cell area are performed to investigate the simultaneous variations of cell size and force. We find that cell area and force increase simultaneously during spreading but the force develops with an apparent delay relative to the increase in cell area. We demonstrate that this may reflect the strain-stiffening property of the cytoskeleton. We further demonstrate that the radial cell force is a concave function of spreading speed and that this may reflect the strengthening of cell–substrate adhesions during spreading.
Polyurethane-bases block copolymers (TPCUs) are block-copolymers with systematically varied soft and hard segments. They have been suggested to serve as material for chondral implants in joint regeneration. Such applications may require the adhesion of chondrocytes to the implant surface, facilitating cell growth while keeping their phenotype. Thus, aims of this work were (1) to modify the surface of soft biostable polyurethane-based model implants (TPCU and TSiPCU) with high-molecular weight hyaluronic acid (HA) using an optimized multistep strategy of immobilization, and (2) to evaluate bioactivity of the modified TPCUs in vitro. Our results show no cytotoxic potential of the TPCUs. HAbioactive molecules (Mw =700kDa) were immobilized onto the polyurethane surface via polyethylenimine (PEI) spacers, and modifications were confirmed by several characterization methods. Tests with porcine chondrocytes indicated the potential of the TPCU-HA for inducing enhanced cell proliferation.
Although integrins are responsible for the interaction of cells with their environment, e.g., the extracellular matrix or artificial substrates, there is still a lack of knowledge about their role in cell adhesion and migration on protein-coated substrates with microtopography. Understanding such interactions could lead to new applications in e.g., medical implants as well as shed light on processes such as embryonic development, angiogenesis, wound healing, and tumor progression. In this work, the influence of surface topography and chemistry on αvβ3 and α5β1 integrin-mediated cell adhesion and migration of healthy and malignant human cell types (human coronary artery endothelial cells, human osteosarcoma cells, and human skin fibroblasts cells) was studied, using microgrooved and flat substrates covered by two different extracellular proteins, fibronectin and vitronectin. Although some general behaviors can be observed, cell migration (speed, directionality, and persistence time) and morphological adaptation (cell area, aspect ratio, and circularity) of cells on protein coated microgrooved substrates are mainly dependent on the cell type and its specific integrin expression.
Digital light microscopy techniques are among the most widely used methods in cell biology and medical research. Despite that, the automated classification of objects such as cells or specific parts of tissues in images is difficult. We present an approach to classify confluent cell layers in microscopy images by learned deep correlation features using deep neural networks. These deep correlation features are generated through the use of gram-based correlation features and are input to a neural network for learning the correlation between them. In this work we wanted to prove if a representation of cell data based on this is suitable for its classification as has been done for artworks with respect to their artistic period. The method generates images that contain recognizable characteristics of a specific cell type, for example, the average size and the ordered pattern.
Medical implants play a central role in modern medicine and both, naturally derived and synthetic materials have been explored as biomaterials for such devices. However, when implanted into living tissue, most materials initiate a host response. In addition, implants often cause bacterial infections leading to complications. Polyelectrolyte multilayer (PEM) coatings can be used for functionalization of medical implants improving the implant integration and reducing foreign body reactions. Some PEMs are also known to show antibacterial properties. We developed a PEM coating suggesting that it can decrease the risk of bacterial infections occurring after implantation while being highly biocompatible. We applied two different standard tests for evaluating the PEM’s antibacterial properties, the ISO norm (ISO 22196) and one ASTM norm (ASTM E2180) test. We found a reduction of bacterial growth on the PEM but to a different degree depending on the testing method. This result demonstrates the need for defining proper method to evaluate antibacterial properties of surface coatings.
Thermoplastic polycarbonate urethane elastomers (TPCU) are potential implant materials for treating degenerative joint diseases thanks to their adjustable rubber-like properties, their toughness, and their durability. We developed a water-containing high-molecular-weight sulfated hyaluronic acid-coating to improve the interaction of TPCU with the synovial fluid. It is suggested that trapped synovial fluid can act as a lubricant that reduces the friction forces and thus provides an enhanced abrasion resistance of TPCU implants. Aims of this work were (i) the development of a coating method for novel soft TPCU with high-molecular sulfated hyaluronic acid to increase the biocompatibility and (ii) the in vitro validation of the functionalized TPCUs in cell culture experiments.
Endogenous electrical fields play an important role in various physiological and pathological events. Yet the effects of electrical cues on processes such as wound healing, tumor development or metastasis are still rarely investigated, though it is known that direct current electrical fields can alter cell migration or proliferation in vitro. Several 2D experimental models for studying cell responses to direct current electrical fields have been presented and characterized but suitable experimental models for electrotaxis studies in 3D are rare. Here we present a novel, easy-to-produce, multi-well-based galvanotactic-chamber for the use in 2D and 3D cell experiments for investigations on the influence of electrical fields on tumor cell migration and tumor spheroid growth. Our presented system allows the simultaneous application of electrical field to cells in four chambers, either cultured on the bottom of the culture-plate (2D) or embedded in hydrogel filled channels(3D). The set-up is also suitable for, live-cell-imaging. Validation tests show stable electrical fields and high cell viabilities inside the channel. Tumor spheroids of various diameters can be exposed to direct current electrical fields up to one week.
Drug-induced liver toxicity is one of the most common reasons for the failure of drugs in clinical trials and frequent withdrawal from the market. Reasons for such failures include the low predictive power of in vivo studies, that is mainly caused by metabolic differences between humans and animals, and intraspecific variances. In addition to factors such as age and genetic background, changes in drug metabolism can also be caused by disease-related changes in the liver. Such metabolic changes have also been observed in clinical settings, for example, in association with a change in liver stiffness, a major characteristic of an altered fibrotic liver. For mimicking these changes in an in vitro model, this study aimed to develop scaffolds that represent the rigidity of healthy and fibrotic liver tissue. We observed that liver cells plated on scaffolds representing the stiffness of healthy livers showed a higher metabolic activity compared to cells plated on stiffer scaffolds. Additionally, we detected a positive effect of a scaffold pre-coated with fetal calf serum (FCS)-containing media. This pre-incubation resulted in increased cell adherence during cell seeding onto the scaffolds. In summary, we developed a scaffold-based 3D model that mimics liver stiffness-dependent changes in drug metabolism that may more easily predict drug interaction in diseased livers.