Refine
Document Type
- Conference Proceeding (25)
- Article (3)
- Part of a Book (2)
An ongoing challenge in our days is to lower the impact on the quality of life caused by dysfunctionality through individual support. With the background of an aging society and continuous increases in costs for care, a holistic solution is needed. This solution must integrate individual needs and preferences, locally available possibilities, regional conditions, professional and informal caregivers and provide the flexibility to implement future requirements. The proposed model is a result of a common initiative to overcome the major obstacles and to center a solution on individual needs caused by dysfunctionality.
The impact of stress of every human being has become a serious problem. Reported impact on persons are a higher rate or health disorders like heart problems, obesity, asthma, diabetes, depressions and many others. An individual in a stressful situation has to deal with altered cognition as well as an affected decision making skill and problem solving. This could lead to a higher risk for accidents in dynamic environments such as automotive. Different papers faced the estimation as well as prediction of drivers’ stress level during driving. Another important question is not only the stress level of the driver himself, but also the influence on and of a group of other drivers in the near area. This paper proposes a system, which determines a group of drivers in a near area as clusters and it derives or computes the individual stress level. This information will be analyzed to generate a stress map, which represents a graphical view about road section with a higher stress influence. Aggregated data can be used to generate navigation routes with a lower stress influence as well as recommend driving behavior to decrease stress influenced driving as well as improve road safety.
Autism spectrum disorders (ASD) affect a large number of children both in the Russian Federation and in Germany. Early diagnosis is key for these children, because the sooner parents notice such disorders in a child and the rehabilitation and treatment program starts, the higher the likelihood of his social adaptation. The difficulties in raising such a child lie in the complexity of his learning outside of children's groups and the complexity of his medical care. In this regard, the development of digital applications that facilitate medical care and education of such children at home is important and relevant. The purpose of the project is to improve the availability and quality of healthcare and social adaptation at home of children with ASD through the use of digital technologies.
To evaluate the quality of sleep, it is important to determine how much time was spent in each sleep stage during the night. The gold standard in this domain is an overnight polysomnography (PSG). But the recording of the necessary electrophysiological signals is extensive and complex and the environment of the sleep laboratory, which is unfamiliar to the patient, might lead to distorted results. In this paper, a sleep stage detection algorithm is proposed that uses only the heart rate signal, derived from electrocardiogram (ECG), as a discriminator. This would make it possible for sleep analysis to be performed at home, saving a lot of effort and money. From the heart rate, using the fast Fourier transformation (FFT), three parameters were calculated in order to distinguish between the different sleep stages. ECG data along with a hypnogram scored by professionals was used from Physionet database, making it easy to compare the results. With an agreement rate of 41.3%, this approach is a good foundation for future research.
Fatigue and drowsiness are responsible for a significant percentage of road traffic accidents. There are several approaches to monitor the driver's drowsiness, ranging from the driver's steering behavior to the analysis of the driver, e.g. eye tracking, blinking, yawning, or electrocardiogram (ECG). This paper describes the development of a low-cost ECG sensor to derive heart rate variability (HRV) data for drowsiness detection. The work includes hardware and software design. The hardware was implemented on a printed circuit board (PCB) designed so that the board can be used as an extension shield for an Arduino. The PCB contains a double, inverted ECG channel including low-pass filtering and provides two analog outputs to the Arduino, which combines them and performs the analog-to-digital conversion. The digital ECG signal is transferred to an NVidia embedded PC where the processing takes place, including QRS-complex, heart rate, and HRV detection as well as visualization features. The resulting compact sensor provides good results in the extraction of the main ECG parameters. The sensor is being used in a larger frame, where facial-recognition-based drowsiness detection is combined with ECG-based detection to improve the recognition rate under unfavorable light or occlusion conditions.
The investigation of stress requires to distinguish between stress caused by physical activity and stress that is caused by psychosocial factors. The behaviour of the heart in response to stress and physical activity is very similar in case the set of monitored parameters is reduced to one. Currently, the differentiation remains difficult and methods which only use the heart rate are not able to differentiate between stress and physical activity, without using additional sensor data input. The approach focusses on methods which generate signals providing characteristics that are useful for detecting stress, physical activity, no activity and relaxation.
A sleep study is a test used to diagnose sleep disorders and is usually done in sleep laboratories. The golden standard for evaluation of sleep is overnight polysomnography (PSG). Unfortunately, in-lab sleep studies are expensive and complex procedures. Furthermore, with a minimum of 22 wire attachments to the patient for sleep recording, this medical procedure is invasive and unfamiliar for the subjects. To solve this problem, low-cost home diagnostic systems, based on noninvasive recording methods requires further researches.
For this intention it is important to find suitable bio vital parameters for classifying sleep phases WAKE, REM, light sleep and deep sleep without any physical impairment at the same time. We decided to analyse body movement (BM), respiration rate (RR) and heart rate variability (HRV) from existing sleep recordings to develop an algorithm which is able to classify the sleep phases automatically. The preliminary results of this project show that BM, RR and HRV are suitable to identify WAKE, REM and NREM stage.
To analyze the humans’ sleep it is necessary as to identify the sleep stages, occurring during the sleep, their durations and sleep cycles. The gold standard procedure for this approach is polysomnography (PSG), which classify the sleep stages based on Rechtschaffen and Kales (R-K) method. This method aside the advantages as high accuracy has however some disadvantages, among others time-consuming and uncomfortable for the patient procedure. Therefore, the development of further methods for the sleep classification in addition to PSG is a promising topic for the investigation and this work has as its aim the presentation of possible ways and goals for this development.
Artefaktkorrektur und verfeinerte Metriken für ein EEG-basiertes System zur Müdigkeitserkennung
(2019)
Fragestellung: Müdigkeit ist ein oft unterschätztes, aber dennoch großes Problem im Straßenverkehr. Von rund 2,5 Mio. Verkehrsunfällen 2015 in Deutschland, waren 2898 Unfälle, mit insgesamt 59 Toten (~1,7 % der Todesfälle), auf Übermüdung zurückzuführen. Schätzungen gehen von einer Dunkelziffer von bis zu 20 % aus. In einer ersten eigenen Studie wurde überprüft, ob ein mobiles EEG in einem Fahrsimulator Müdigkeitszustände zuverlässig erkennen kann. Die Erkennungsrate lag lediglich bei 61 %. Ziel dieser Arbeit ist, das verwendete Messsystem zu verbessern. Dazu wird die Genauigkeit durch eine Artefaktkorrektur und mit Hilfe von verfeinerten Qualitätsmetriken erhöht. Eine erkannte Übermüdung wird dem Fahrer dann in angemessener Weise angezeigt, so dass er entsprechend reagieren kann.
Patienten und Methoden: Die Independent Component Analysis (ICA) ist ein multivariates Verfahren, um mehrere Zufallsvariablen zu analysieren. Für die Entscheidung, ob ein Fahrer gerade müde oder wach ist, wird der erstellte Merkmalsvektor für jede Sequenz mit ICA klassifiziert. Dafür wird ein trainierter Machine-Learning-Algorithmus eingesetzt, der in der Lage ist, auch unbekannte Datensätze in Klassen einzuteilen. Um die benötigten Frequenzwerte zu erhalten, wurde für jeden EEG-Kanal eine Fourier Transformation durchgeführt. Der erstellte Merkmalsvektor wird im nächsten Schritt durch ein Künstliches Neuronales Netz klassifiziert. Für das Training werden vorab erstellte Merkmalsvektoren mit den Klassen „Wach“ und „Müde“ versehen. Diese Daten werden zufällig gemischt und im Verhältnis 2:1 in eine Trainings- und Testmenge geteilt. Das Experiment wurde mit acht Personen mit jeweils zweimal 45 min Testfahrt durchgeführt.
Ergebnisse: Der komplette Datensatz besteht aus 150.000 Signalwerten, welche zu ca. 7000 Sequenzen zusammengefasst werden. Durch die Anwendung der Qualitätsmetrik bleiben 4370 Sequenzen für das Training übrig. Bei invaliden Sequenzen aufgrund von EEG-Artefakten gibt es deutliche Unterschiede. Im „Wach“ Zustand werden dreimal so viele Sequenzen verworfen als im „Müde“ Zustand. Insgesamt werden bei wachen Probanden im Schnitt ca. 50 % der Sequenzen verworfen, bei Müden lediglich 25 %. Im Durchschnitt erreicht das System eine Erkennungsrate von 73 % für beide Zustände. Vergleicht man nun das Verhältnis von „Wach“ und „Müde“ und lässt „Leichte Müdigkeit“ außen vor, liegen die Ergebnisse bei über 90 %.
Schlussfolgerungen: Die Ergebnisse zeigen, dass die Aufmerksamkeit während des Experiments abnimmt bzw. die Müdigkeit zunimmt. Dies verdeutlichen zum einen subjektive und objektive Beobachtungen von Müdigkeitsanzeichen. Zum anderen lassen sich messbare und klassifizierbare Unterschiede im EEG Signal nachweisen. Die als Merkmale eingesetzten Theta-Wellen zeigten eine niedrigere Amplitude gegen Ende des Experiments. Die Erweiterung der binären Klassifizierung führt zu einer weiteren Stabilisierung der Ergebnisse. Artefaktkorrektur und Qualitätsmetriken steigern die Güte der Daten weiter. Die entwickelte Anwendung zur Müdigkeitserkennung ermittelt messbare Zeichen von Müdigkeit und kann eine gute Entscheidung über die Fahrtauglichkeit treffen.
This document presents an algorithm for a nonobtrusive recognition of Sleep/Wake states using signals derived from ECG, respiration, and body movement captured while lying in a bed. As a core mathematical base of system data analytics, multinomial logistic regression techniques were chosen. Derived parameters of the three signals are used as the input for the proposed method. The overall achieved accuracy rate is 84% for Wake/Sleep stages, with Cohen’s kappa value 0.46. The presented algorithm should support experts in analyzing sleep quality in more detail. The results confirm the potential of this method and disclose several ways for its improvement.