Refine
Document Type
- Conference proceeding (55)
- Journal article (40)
- Book chapter (10)
Is part of the Bibliography
- yes (105)
Institute
- Informatik (104)
- Technik (1)
Publisher
- Springer (27)
- Elsevier (26)
- IEEE (13)
- Hochschule Reutlingen (10)
- Università Politecnica delle Marche (9)
- MDPI (8)
- HTWG Konstanz (2)
- American Institute of Physics (1)
- Association for Computing Machinery (1)
- CRC Press (1)
To evaluate the quality of sleep, it is important to determine how much time was spent in each sleep stage during the night. The gold standard in this domain is an overnight polysomnography (PSG). But the recording of the necessary electrophysiological signals is extensive and complex and the environment of the sleep laboratory, which is unfamiliar to the patient, might lead to distorted results. In this paper, a sleep stage detection algorithm is proposed that uses only the heart rate signal, derived from electrocardiogram (ECG), as a discriminator. This would make it possible for sleep analysis to be performed at home, saving a lot of effort and money. From the heart rate, using the fast Fourier transformation (FFT), three parameters were calculated in order to distinguish between the different sleep stages. ECG data along with a hypnogram scored by professionals was used from Physionet database, making it easy to compare the results. With an agreement rate of 41.3%, this approach is a good foundation for future research.
To assess the quality of a person’s sleep, it is essential to examine the sleep behaviour by identifying the several sleep stages, their durations and sleep cycles. The established and gold standard procedure for sleep stage scoring is overnight polysomnography (PSG) with the Rechtschaffen and Kales (R-K) method. Unfortunately, the conduct of PSG is time-consuming and unfamiliar for the subjects and might have an impact of the recorded data. To avoid the disadvantages with PSG, it is important to make further investigations in low-cost home diagnostic systems. For this intention it is necessary to find suitable bio vital parameters for classifying sleep stages without any physical impairments at the same time. Due to the promising results in several publications we want to analyse existing methods for sleep stage classification based on the parameters body movement,
heartbeat and respiration. Our aim was to find different behaviour patterns in the several sleep stages. Therefore, the average values of 15 whole-night PSG recordings -obtained from the ‘DREAMS
Subjects Database’- where analysed in the light of heartbeat, body movement and respiration with 10 different methods.
To analyze the humans’ sleep it is necessary as to identify the sleep stages, occurring during the sleep, their durations and sleep cycles. The gold standard procedure for this approach is polysomnography (PSG), which classify the sleep stages based on Rechtschaffen and Kales (R-K) method. This method aside the advantages as high accuracy has however some disadvantages, among others time-consuming and uncomfortable for the patient procedure. Therefore, the development of further methods for the sleep classification in addition to PSG is a promising topic for the investigation and this work has as its aim the presentation of possible ways and goals for this development.
A sleep study is a test used to diagnose sleep disorders and is usually done in sleep laboratories. The golden standard for evaluation of sleep is overnight polysomnography (PSG). Unfortunately, in-lab sleep studies are expensive and complex procedures. Furthermore, with a minimum of 22 wire attachments to the patient for sleep recording, this medical procedure is invasive and unfamiliar for the subjects. To solve this problem, low-cost home diagnostic systems, based on noninvasive recording methods requires further researches.
For this intention it is important to find suitable bio vital parameters for classifying sleep phases WAKE, REM, light sleep and deep sleep without any physical impairment at the same time. We decided to analyse body movement (BM), respiration rate (RR) and heart rate variability (HRV) from existing sleep recordings to develop an algorithm which is able to classify the sleep phases automatically. The preliminary results of this project show that BM, RR and HRV are suitable to identify WAKE, REM and NREM stage.
Sleep study can be used for detection of sleep quality and in general bed behaviors. These results can helpful for regulating sleep and recognizing different sleeping disorders of human. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this work is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides, these methods not only decrease practicality due to the process of having to put them on, but they are also very expensive. The system proposed in this paper classifies respiration and body movement with only one type of sensor and also in a noninvasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed excellent results in the classification of breathing rate and body movements.
Health monitoring in a home environment can have broader use since it may provide continuous control of health parameters with relatively minor intrusiveness into regular life. This work aims to verify if it is possible to replace the typical in some sleep medicine areas subjective questioning by an objective measurement using electronic devices. For this purpose, a study was conducted with ten subjects, in which objective and subjective measurement of relevant sleep parameters took place. The results of both measurement methods were evaluated and analyzed. The results showed that while for some measures, such as Total Time in Bed, there is a high agreement between objective and subjective measurements, for others, such as sleep quality, there are significant differences. For this reason, currently, a combination of both measurement methods may be beneficial and provide the most detailed results, while a partial replacement can already reduce the number of questions at the subjective measurement by measurement through electronic devices.
The present work proposes the use of modern ICT technologies such as smartphones, NFCs, internet, and web technologies, to help patients in carrying out their therapies. The implemented system provides a calendar with a reminder of the assumptions, ensures the drug identification through NFC, allows remote assistance from healthcare staff and family members to check and manage the therapy in real-time. The system also provides centralized information on the patient's therapeutic situation, helpful in choosing new compatible therapies.
Background: One of the most promising health care development areas is introducing telemedicine services and creating solutions based on blockchain technology. The study of systems combining both these domains indicates the ongoing expansion of digital technologies in this market segment.
Objective: This paper aims to review the feasibility of blockchain technology for telemedicine.
Methods: The authors identified relevant studies via systematic searches of databases including PubMed, Scopus, Web of Science, IEEE Xplore, and Google Scholar. The suitability of each for inclusion in this review was assessed independently. Owing to the lack of publications, available blockchain-based tokens were discovered via conventional web search engines (Google, Yahoo, and Yandex).
Results: Of the 40 discovered projects, only 18 met the selection criteria. The 5 most prevalent features of the available solutions (N=18) were medical data access (14/18, 78%), medical service processing (14/18, 78%), diagnostic support (10/18, 56%), payment transactions (10/18, 56%), and fundraising for telemedical instrument development (5/18, 28%).
Conclusions: These different features (eg, medical data access, medical service processing, epidemiology reporting, diagnostic support, and treatment support) allow us to discuss the possibilities for integration of blockchain technology into telemedicine and health care on different levels. In this area, a wide range of tasks can be identified that could be accomplished based on digital technologies using blockchains.
Preliminary results of homomorphic deconvolution application to surface EMG signals during walking
(2021)
Homomorphic deconvolution is applied to sEMG signals recorded during walking. Gastrocnemius lateralis and tibialis anterior signals were acquired according to SENIAM recommendation. MUAP parameters like amplitude and scale were estimated, whilst the MUAP shape parameter was fixed. This features a useful time-frequency representation of sEMG signal. Estimation of scale MUAP parameter was verified extracting the mean frequency of filtered EMG signal, extracted from the scale parameter estimated with two different MUAP shape values.