Refine
Document Type
- Conference proceeding (50)
- Journal article (38)
- Book chapter (10)
Is part of the Bibliography
- yes (98)
Institute
- Informatik (97)
- Technik (1)
Publisher
- Springer (27)
- Elsevier (21)
- IEEE (11)
- Hochschule Reutlingen (10)
- Università Politecnica delle Marche (9)
- MDPI (8)
- HTWG Konstanz (2)
- American Institute of Physics (1)
- Association for Computing Machinery (1)
- CRC Press (1)
The impact of stress of every human being has become a serious problem. Reported impact on persons are a higher rate or health disorders like heart problems, obesity, asthma, diabetes, depressions and many others. An individual in a stressful situation has to deal with altered cognition as well as an affected decision making skill and problem solving. This could lead to a higher risk for accidents in dynamic environments such as automotive. Different papers faced the estimation as well as prediction of drivers’ stress level during driving. Another important question is not only the stress level of the driver himself, but also the influence on and of a group of other drivers in the near area. This paper proposes a system, which determines a group of drivers in a near area as clusters and it derives or computes the individual stress level. This information will be analyzed to generate a stress map, which represents a graphical view about road section with a higher stress influence. Aggregated data can be used to generate navigation routes with a lower stress influence as well as recommend driving behavior to decrease stress influenced driving as well as improve road safety.
This paper presents a new European initiative to support the sustainable empowerment of the ageing society. Empowerment in this context represents the capability to have a self-determined, autonomous and healthy life. The paper justifies the need of such an initiative and highlights the role that telemedicine and ambient assisted living can play in this environment.
Methods based exclusively on heart rate hardly allow to differentiate between physical activity, stress, relaxation, and rest, that is why an additional sensor like activity/movement sensor added for detection and classification. The response of the heart to physical activity, stress, relaxation, and no activity can be very similar. In this study, we can observe the influence of induced stress and analyze which metrics could be considered for its detection. The changes in the Root Mean Square of the Successive Differences provide us with information about physiological changes. A set of measurements collecting the RR intervals was taken. The intervals are used as a parameter to distinguish four different stages. Parameters like skin conductivity or skin temperature were not used because the main aim is to maintain a minimum number of sensors and devices and thereby to increase the wearability in the future.
This work is a study about a comparison of survey tools and it should help developers in selecting a suited tool for application in an AAL environment. The first step was to identify the basic required functionality of the survey tools used for AAL technologies and to compare these tools by their functionality and assignments. The comparative study was derived from the data obtained, previous literature studies and further technical data. A list of requirements was stated and ordered in terms of relevance to the target application domain. With the help of an integrated assessment method, the calculation of a generalized estimate value was performed and the result is explained. Finally, the planned application of this tool in a running project is explained.
Background
The actual task of electrocardiographic examinations is to increase the reliability of diagnosing the condition of the heart. Within the framework of this task, an important direction is the solution of the inverse problem of electrocardiography, based on the processing of electrocardiographic signals of multichannel cardio leads at known electrode coordinates in these leads (Titomir et al. Noninvasiv electrocardiotopography, 2003), (Macfarlane et al. Comprehensive Electrocardiology, 2nd ed. (Chapter 9), 2011).
Results
In order to obtain more detailed information about the electrical activity of the heart, we carry out a reconstruction of the distribution of equivalent electrical sources on the heart surface. In this area, we hold reconstruction of the equivalent sources during the cardiac cycle at relatively low hardware cost. ECG maps of electrical potentials on the surface of the torso (TSPM) and electrical sources on the surface of the heart (HSSM) were studied for different times of the cardiac cycle. We carried out a visual and quantitative comparison of these maps in the presence of pathological regions of different localization. For this purpose we used the model of the heart electrical activity, based on cellular automata.
Conclusions
The model of cellular automata allows us to consider the processes of heart excitation in the presence of pathological regions of various sizes and localization. It is shown, that changes in the distribution of electrical sources on the surface of the epicardium in the presence of pathological areas with disturbances in the conduction of heart excitation are much more noticeable than changes in ECG maps on the torso surface.
The evaluation of the effectiveness of different machine learning algorithms on a publicly available database of signals derived from wearable devices is presented with the goal of optimizing human activity recognition and classification. Among the wide number of body signals we choose a couple of signals, namely photoplethysmographic (optically detected subcutaneous blood volume) and tri-axis acceleration signals that are easy to be simultaneously acquired using commercial widespread devices (e.g. smartwatches) as well as custom wearable wireless devices designed for sport, healthcare, or clinical purposes. To this end, two widely used algorithms (decision tree and k-nearest neighbor) were tested, and their performance were compared to two new recent algorithms (particle Bernstein and a Monte Carlo-based regression) both in terms of accuracy and processing time. A data preprocessing phase was also considered to improve the performance of the machine learning procedures, in order to reduce the problem size and a detailed analysis of the compression strategy and results is also presented.
The ballistocardiography is a technique that measures the heart rate from the mechanical vibrations of the body due to the heart movement. In this work a novel noninvasive device placed under the mattress of a bed estimates the heart rate using the ballistocardiography. Different algorithms for heart rate estimation have been developed.
This document presents a new complete standalone system for a recognition of sleep apnea using signals from the pressure sensors placed under the mattress. The developed hardware part of the system is tuned to filter and to amplify the signal. Its software part performs more accurate signal filtering and identification of apnea events. The overall achieved accuracy of the recognition of apnea occurrence is 91%, with the average measured recognition delay of about 15 seconds, which confirms the suitability of the proposed method for future employment. The main aim of the presented approach is the support of the healthcare system with the cost-efficient tool for recognition of sleep apnea in the home environment.
The recovery of our body and brain from fatigue directly depends on the quality of sleep, which can be determined from the results of a sleep study. The classification of sleep stages is the first step of this study and includes the measurement of vital data and their further processing. The non-invasive sleep analysis system is based on a hardware sensor network of 24 pressure sensors providing sleep phase detection. The pressure sensors are connected to an energy-efficient microcontroller via a system-wide bus. A significant difference between this system and other approaches is the innovative way in which the sensors are placed under the mattress. This feature facilitates the continuous use of the system without any noticeable influence on the sleeping person. The system was tested by conducting experiments that recorded the sleep of various healthy young people. Results indicate the potential to capture respiratory rate and body movement.
Comparison of sleep characteristics measurements: a case study with a population aged 65 and above
(2020)
Good sleep is crucial for a healthy life of every person. Unfortunately, its quality often decreases with aging. A common approach to measuring the sleep characteristics is based on interviews with the subjects or letting them fill in a daily questionnaire and afterward evaluating the obtained data. However, this method has time and personal costs for the interviewer and evaluator of responses. Therefore, it would be important to execute the collection and evaluation of sleep characteristics automatically. To do that, it is necessary to investigate the level of agreement between measurements performed in a traditional way using questionnaires and measurements obtained using electronic monitoring devices. The study presented in this manuscript performs this investigation, comparing such sleep characteristics as "time going to bed", "total time in bed", "total sleep time" and "sleep efficiency". A total number of 106 night records of elderly persons (aged 65+) were analyzed. The results achieved so far reveal the fact that the degree of agreement between the two measurement methods varies substantially for different characteristics, from 31 minutes of mean difference for "time going to bed" to 77 minutes for "total sleep time". For this reason, a direct exchange of objective and subjective measuring methods is currently not possible.