Refine
Document Type
- Journal article (1)
- Book chapter (1)
- Conference proceeding (1)
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Informatik (3)
Publisher
Selecting a suitable development method for a specific project context is one of the most challenging activities in process design. Every project is unique and, thus, many context factors have to be considered. Recent research took some initial steps towards statistically constructing hybrid development methods, yet, paid little attention to the peculiarities of context factors influencing method and practice selection. In this paper, we utilize exploratory factor analysis and logistic regression analysis to learn such context factors and to identify methods that are correlated with these factors. Our analysis is based on 829 data points from the HELENA dataset. We provide five base clusters of methods consisting of up to 10 methods that lay the foundation for devising hybrid development methods. The analysis of the five clusters using trained models reveals only a few context factors, e.g., project/product size and target application domain, that seem to significantly influence the selection of methods. An extended descriptive analysis of these practices in the context of the identified method clusters also suggests a consolidation of the relevant practice sets used in specific project contexts.
Selecting a suitable development method for a specific project context is one of the most challenging activities in process design. To extend the so far statistical construction of hybrid development methods, we analyze 829 data points to investigate which context factors influence the choice of methods or practices. Using exploratory factor analysis, we derive five base clusters consisting of up to 10 methods. Logistic regression analysis then reveals which context factors have an influence on the integration of methods from these clusters in the development process. Our results indicate that only a few context factors including project/product size and target application domain significantly influence the choice. This summary refers to the paper “Determining Context Factors for Hybrid Development Methods with Trained Models”. This paper was published in the proceedings of the International Conference on Software and System Process in 2020.
Together with many success stories, promises such as the increase in production speed and the improvement in stakeholders' collaboration have contributed to making agile a transformation in the software industry in which many companies want to take part. However, driven either by a natural and expected evolution or by contextual factors that challenge the adoption of agile methods as prescribed by their creator(s), software processes in practice mutate into hybrids over time. Are these still agile In this article, we investigate the question: what makes a software development method agile We present an empirical study grounded in a large-scale international survey that aims to identify software development methods and practices that improve or tame agility. Based on 556 data points, we analyze the perceived degree of agility in the implementation of standard project disciplines and its relation to used development methods and practices. Our findings suggest that only a small number of participants operate their projects in a purely traditional or agile manner (under 15%). That said, most project disciplines and most practices show a clear trend towards increasing degrees of agility. Compared to the methods used to develop software, the selection of practices has a stronger effect on the degree of agility of a given discipline. Finally, there are no methods or practices that explicitly guarantee or prevent agility. We conclude that agility cannot be defined solely at the process level. Additional factors need to be taken into account when trying to implement or improve agility in a software company. Finally, we discuss the field of software process-related research in the light of our findings and present a roadmap for future research.