Refine
Document Type
- Journal article (8)
- Conference proceeding (5)
Language
- English (13)
Is part of the Bibliography
- yes (13)
Institute
- Informatik (13)
Publisher
- Elsevier (5)
- IADIS (2)
- IADIS Press (2)
- Curran Associates Inc. (1)
- Frontiers (1)
- International Association for Development of the Information Society (1)
- SISSA (1)
Literature reviews are essential for any scientific work, both as part of a dissertation or as a stand-alone work. Scientists benefit from the fact that more and more literature is available in electronic form, and finding and accessing relevant literature has become more accessible through scientific databases. However, a traditional literature review method is characterized by a highly manual process, while technologies and methods in big data, machine learning, and text mining have advanced. Especially in areas where research streams are rapidly evolving, and topics are becoming more comprehensive, complex, and heterogeneous, it is challenging to provide a holistic overview and identify research gaps manually. Therefore, we have developed a framework that supports the traditional approach of conducting a literature review using machine learning and text mining methods. The framework is particularly suitable in cases where a large amount of literature is available, and a holistic understanding of the research area is needed. The framework consists of several steps in which the critical mind of the scientist is supported by machine learning. The unstructured text data is transformed into a structured form through data preparation realized with text mining, making it applicable for various machine learning techniques. A concrete example in the field of smart cities makes the framework tangible.
The rapid development and growth of knowledge has resulted in a rich stream of literature on various topics. Information systems (IS) research is becoming increasingly extensive, complex, and heterogeneous. Therefore, a proper understanding and timely analysis of the existing body of knowledge are important to identify emerging topics and research gaps. Despite the advances of information technology in the context of big data, machine learning, and text mining, the implementation of systematic literature reviews (SLRs) is in most cases still a purely manual task. This might lead to serious shortcomings of SLRs in terms of quality and time. The outlined approach in this paper supports the process of SLRs with machine learning techniques. For this purpose, we develop a framework with embedded steps of text mining, cluster analysis, and network analysis to analyze and structure a large amount of research literature. Although the framework is presented using IS research as an example, it is not limited to the IS field but can also be applied to other research areas.
The shift of populations to cities is creating challenges in many respects, thus leading to increasing demand for smart solutions of urbanization problems. Smart city applications range from technical and social to economic and ecological. The main focus of this work is to provide a systematic literature review of smart city research to answer two main questions: (1) How is current research on smart cities structured? and (2) What directions are relevant for future research on smart cities? To answer these research questions, a text-mining approach is applied to a large number of publications. This provides an overview and gives insights into relevant dimensions of smart city research. Although the main dimensions of research are already described in the literature, an evaluation of the relevance of such dimensions is missing. Findings suggest that the dimensions of environment and governance are popular, while the dimension of economy has received only limited attention.
The increasing urban population growth leads to challenges in cities in many aspects: Urbanisation problems such as excessive environmental pollution or increasing urban traffic demand new and innovative solutions. In this context, the concept of smart cities is discussed. An enabling element of the smart city concept is applying information technology (IT) to improve administrative efficiency and quality of life while reducing costs and resource consumption and ensuring greater citizen participation in administrative and urban development issues. While these smart city services are technologically studied and implemented, government officials, citizens or businesses are often unaware of the large variety of smart city service solutions. Therefore, this work deals with developing a smart city services catalogue that documents best practice services to create a platform that brings citizens, city government, and businesses together. Although the concept of IT service catalogues is not new and guidelines and recommendations for the design and development of service catalogues already exist in the corporate context, there is little work on smart city service catalogues. Therefore, approaches from agile software development and pattern research were adapted to develop the smart city service catalogue platform in this work.
In this paper we presented the results of the workshop with the topic: Co-creation in citizen science (CS) for the development of climate adaptation measurements - Which success factors promote, and which barriers hinder a fruitful collaboration and co-creation process between scientists and volunteers? Under consideration of social, motivational, technical/technological and legal factors., which took place at the CitSci2022. We underlined the mentioned factors in the work with scientific literature. Our findings suggest that a clear communication strategy of goals and how citizen scientists can contribute to the project are important. In addition, they have to feel include and that the contribution makes a difference. To achieve this, it is critical to present the results to the citizen scientists. Also, the relationship between scientist and citizen scientists are essential to keep the citizen scientists engaged. Notification of meetings and events needs to be made well in advance and should be scheduled on the attendees' leisure time. The citizen scientists should be especially supported in technical questions. As a result, they feel appreciated and remain part of the project. For legal factors the current General Data Protection Regulation was considered important by the participants of the workshop. For the further research we try to address the individual points and first of all to improve our communication with the citizen scientist about the project goals and how they can contribute. In addition, we should better share the achieved results.
On the design of an urban data and modeling platform and its application to urban district analyses
(2020)
An integrated urban platform is the essential software infrastructure for smart, sustainable and resilitent city planning, operation and maintenance. Today such platforms are mostly designed to handle and analyze large and heterogeneous urban data sets from very different domains. Modeling and optimization functionalities are usually not part of the software concepts. However, such functionalities are considered crucial by the authors to develop transformation scenarios and to optimized smart city operation. An urban platform needs to handle multiple scales in the time and spatial domain, ranging from long term population and land use change to hourly or sub-hourly matching of renewable energy supply and urban energy demand.
The shift of populations to cities is creating challenges in many respects, thus leading to increasing demand for smart solutions of urbanization problems. Smart city applications range from technical and social to economic and ecological. The main focus of this work is to provide a systematic literature review of smart city research to answer two main questions: (1) How is current research on smart cities structured? And (2) What directions are relevant for future research on smart cities? To answer these research questions, a text-mining approach is applied to a large number of publications. This provides an overview and gives insights into relevant dimensions of smart city research. Although the main dimensions of research are already described in the literature, an evaluation of the relevance of such dimensions is missing. Findings suggest that the dimensions of environment and governance are popular, while the dimension of economy has received only limited attention.
The paper explains a workflow to simulate the food energy water (FEW) nexus for an urban district combining various data sources like 3D city models, particularly the City Geography Markup Language (CityGML) data model from the Open Geospatial Consortium, Open StreetMap and Census data. A long term vision is to extend the CityGML data model by developing a FEW Application Domain Extension (FEW ADE) to support future FEW simulation workflows such as the one explained in this paper. Together with the mentioned simulation workflow, this paper also identifies some necessary FEW related parameters for the future development of a FEW ADE. Furthermore, relevant key performance indicators are investigated, and the relevant datasets necessary to calculate these indicators are studied. Finally, different calculations are performed for the downtown borough Ville-Marie in the city of Montréal (Canada) for the domains of food waste (FW) and wastewater (WW) generation. For this study, a workflow is developed to calculate the energy generation from anaerobic digestion of FW and WW. In the first step, the data collection and preparation was done. Here relevant data for georeferencing, data for model set-up, and data for creating the required usage libraries, like food waste and wastewater generation per person, were collected. The next step was the data integration and calculation of the relevant parameters, and lastly, the results were visualized for analysis purposes. As a use case to support such calculations, the CityGML level of detail two model of Montréal is enriched with information such as building functions and building usages from OpenStreetMap. The calculation of the total residents based on the CityGML model as the main input for Ville-Marie results in a population of 72,606. The statistical value for 2016 was 89,170, which corresponds to a deviation of 15.3%. The energy recovery potential of FW is about 24,024 GJ/year, and that of wastewater is about 1,629 GJ/year, adding up to 25,653 GJ/year. Relating values to the calculated number of inhabitants in Ville-Marie results in 330.9 kWh/year for FW and 22.4 kWh/year for wastewater, respectively.
Urban platforms are essential for smart and sustainable city planning and operation. Today they are mostly designed to handle and connect large urban data sets from very different domains. Modelling and optimisation functionalities are usually not part of the cities software infrastructure. However, they are considered crucial for transformation scenario development and optimised smart city operation. The work discusses software architecture concepts for such urban platforms and presents case study results on the building sector modelling, including urban data analysis and visualisation. Results from a case study in New York are presented to demonstrate the implementation status.
During the first years of the last decade, Egypt used to face recurrent electricity cut-offs in summer. In the past few years, the electricity tariff dramatically increased. Radiative cooling to the clear night sky is a renewable energy source that represents a relative solution. The dry desert climate promotes nocturnal radiative cooling applications. This study investigates the potential of nocturnal radiative cooling systems (RCSs) to reduce the energy consumption of the residential building sector in Egypt. The system technology proposed in this work is based on uncovered solar thermal collectors integrated into the building hydronic system. By implementing different control strategies, the same system could be used for both cooling and heating applications. The goal of this paper is to analyze the performance of RCSs in residential buildings in Egypt. The dynamic simulation program TRNSYS was used to simulate the thermal behavior of the system. The relevant issues of Egypt as a case-study are firstly overviewed. Then the paper introduces the work done to develop a building model that represents a typical residential apartment in Egypt. Typical occupancy profiles were developed to define the internal thermal gains. The adopted control strategy to optimize the system operation is presented as well. To fully understand and hence evaluate the operation of the proposed RCS, four simulation cases were considered: 1. a reference case (fully passive), 2. the stand-alone operation of the RCS, 3. ideal heating & cooling operation (fully-active), and 4. the hybrid-operation (when the active cooling system is supported by the proposed RCS). The analysis considered the main three distinct climates in Egypt, represented by the cities of Alexandria, Cairo and Asyut. The hotter and drier weather conditions resulted in a higher cooling potential and larger temperature differences. The simulated cooling power in Asyut was 28.4 W/m² for a 70 m² absorber field. For a smaller field area of 10 m², the cooling power reached 109 W/m² but with humble temperature differences. To meet the rigorous thermal comfort conditions, the proposed sensible RCS cannot fully replace conventional air-conditioning units, especially in humid areas like Alexandria. When working in a hybrid system, a 10% reduction in the active cooling energy demand could be achieved in Asyut to keep the cooling set-point at 24 °C. This percentage reduction was nearly doubled when the thermal comfort set-point was increased by two degrees (26 °C). In a sensitivity analysis, external shading devices as a passive measure as well as the implementation of the Egyptian code for buildings (ECP306/1–2005) were also investigated. The analysis of this study raised other relevant aspects to discuss, e.g. system-sizing, environmental effects, limitations and recommendations.