Refine
Document Type
- Journal article (7)
- Conference proceeding (5)
Language
- English (12)
Is part of the Bibliography
- yes (12)
Institute
- Informatik (12)
Publisher
- Elsevier (4)
- IADIS Press (3)
- IADIS (2)
- Curran Associates Inc. (1)
- Frontiers Media (1)
- SISSA (1)
Zero or plus energy office buildings must have very high building standards and require highly efficient energy supply systems due to space limitations for renewable installations. Conventional solar cooling systems use photovoltaic electricity or thermal energy to run either a compression cooling machine or an absorption-cooling machine in order to produce cooling energy during daytime, while they use electricity from the grid for the nightly cooling energy demand. With a hybrid photovoltaic-thermal collector, electricity as well as thermal energy can be produced at the same time. These collectors can produce also cooling energy at nighttime by longwave radiation exchange with the night sky and convection losses to the ambient air. Such a renewable trigeneration system offers new fields of applications. However, the technical, ecological and economical aspects of such systems are still largely unexplored.
In this work, the potential of a PVT system to heat and cool office buildings in three different climate zones is investigated. In the investigated system, PVT collectors act as a heat source and heat sink for a reversible heat pump. Due to the reduced electricity consumption (from the grid) for heat rejection, the overall efficiency and economics improve compared to a conventional solar cooling system using a reversible air-to-water heat pump as heat and cold source.
A parametric simulation study was carried out to evaluate the system design with different PVT surface areas and storage tank volumes to optimize the system for three different climate zones and for two different building standards. It is shown such systems are technically feasible today. With a maximum utilization of PV electricity for heating, ventilation, air conditioning and other electricity demand such as lighting and plug loads, high solar fractions and primary energy savings can be achieved.
Annual costs for such a system are comparable to conventional solar thermal and solar electrical cooling systems. Nevertheless, the economic feasibility strongly depends on country specific energy prices and energy policy. However, even in countries without compensation schemes for energy produced by renewables, this system can still be economically viable today. It could be shown, that a specific system dimensioning can be found at each of the investigated locations worldwide for a valuable economic and ecological operation of an office building with PVT technologies in different system designs.
Urban platforms are essential for smart and sustainable city planning and operation. Today they are mostly designed to handle and connect large urban data sets from very different domains. Modelling and optimisation functionalities are usually not part of the cities software infrastructure. However, they are considered crucial for transformation scenario development and optimised smart city operation. The work discusses software architecture concepts for such urban platforms and presents case study results on the building sector modelling, including urban data analysis and visualisation. Results from a case study in New York are presented to demonstrate the implementation status.
The paper explains a workflow to simulate the food energy water (FEW) nexus for an urban district combining various data sources like 3D city models, particularly the City Geography Markup Language (CityGML) data model from the Open Geospatial Consortium, Open StreetMap and Census data. A long term vision is to extend the CityGML data model by developing a FEW Application Domain Extension (FEW ADE) to support future FEW simulation workflows such as the one explained in this paper. Together with the mentioned simulation workflow, this paper also identifies some necessary FEW related parameters for the future development of a FEW ADE. Furthermore, relevant key performance indicators are investigated, and the relevant datasets necessary to calculate these indicators are studied. Finally, different calculations are performed for the downtown borough Ville-Marie in the city of Montréal (Canada) for the domains of food waste (FW) and wastewater (WW) generation. For this study, a workflow is developed to calculate the energy generation from anaerobic digestion of FW and WW. In the first step, the data collection and preparation was done. Here relevant data for georeferencing, data for model set-up, and data for creating the required usage libraries, like food waste and wastewater generation per person, were collected. The next step was the data integration and calculation of the relevant parameters, and lastly, the results were visualized for analysis purposes. As a use case to support such calculations, the CityGML level of detail two model of Montréal is enriched with information such as building functions and building usages from OpenStreetMap. The calculation of the total residents based on the CityGML model as the main input for Ville-Marie results in a population of 72,606. The statistical value for 2016 was 89,170, which corresponds to a deviation of 15.3%. The energy recovery potential of FW is about 24,024 GJ/year, and that of wastewater is about 1,629 GJ/year, adding up to 25,653 GJ/year. Relating values to the calculated number of inhabitants in Ville-Marie results in 330.9 kWh/year for FW and 22.4 kWh/year for wastewater, respectively.
The shift of populations to cities is creating challenges in many respects, thus leading to increasing demand for smart solutions of urbanization problems. Smart city applications range from technical and social to economic and ecological. The main focus of this work is to provide a systematic literature review of smart city research to answer two main questions: (1) How is current research on smart cities structured? and (2) What directions are relevant for future research on smart cities? To answer these research questions, a text-mining approach is applied to a large number of publications. This provides an overview and gives insights into relevant dimensions of smart city research. Although the main dimensions of research are already described in the literature, an evaluation of the relevance of such dimensions is missing. Findings suggest that the dimensions of environment and governance are popular, while the dimension of economy has received only limited attention.
The shift of populations to cities is creating challenges in many respects, thus leading to increasing demand for smart solutions of urbanization problems. Smart city applications range from technical and social to economic and ecological. The main focus of this work is to provide a systematic literature review of smart city research to answer two main questions: (1) How is current research on smart cities structured? And (2) What directions are relevant for future research on smart cities? To answer these research questions, a text-mining approach is applied to a large number of publications. This provides an overview and gives insights into relevant dimensions of smart city research. Although the main dimensions of research are already described in the literature, an evaluation of the relevance of such dimensions is missing. Findings suggest that the dimensions of environment and governance are popular, while the dimension of economy has received only limited attention.
On the design of an urban data and modeling platform and its application to urban district analyses
(2020)
An integrated urban platform is the essential software infrastructure for smart, sustainable and resilitent city planning, operation and maintenance. Today such platforms are mostly designed to handle and analyze large and heterogeneous urban data sets from very different domains. Modeling and optimization functionalities are usually not part of the software concepts. However, such functionalities are considered crucial by the authors to develop transformation scenarios and to optimized smart city operation. An urban platform needs to handle multiple scales in the time and spatial domain, ranging from long term population and land use change to hourly or sub-hourly matching of renewable energy supply and urban energy demand.
The global demand for resources such as energy, land, or water is constantly increasing. It is therefore not sur- prising that research on the Food-Energy-Water (FEW) nexus has become a scientific as well as a general focus in recent years. A significant increase in publications since 2015 can be observed, and it can be expected that this trend will continue. A multilevel (macro, meso, and micro) perspective is essential, as the FEW nexus has cross- sectoral interdependencies. Several review studies on the FEW nexus can be found in the literature, in general, it can be concluded that the FEW nexus is a multi-disciplinary and complex topic. The studies examined identify essential fields of action for research, policy, and society. However, questions such as what are the main research fields at each level? Is it possible to divide the research into specific clusters? and do the clusters correlate with the levels, and what are the methods of modeling used in the clusters and levels? are still not fully discussed in the literature. An extensive literature review was conducted to get insight into the existing research areas. Especially in such fields as the FEW nexus, the amount of literature can get huge, and a human could get lost analyzing the literature manually. For that, we created word clouds and performed a cluster- and network-analysis to support the selection of most relevant papers for a detailed reading. In 2021, the most publications were published, with 173 publications, which corresponds to a share of 26.6 %. There has been a significant increase since 2015, and it can be expected that this trend will continue in the coming years. Most of the first authors come from the USA (25.4 %), followed by China with 22.4 %. From the word cloud and the top 20 words, which appear in the title and abstract, it can be deduced that the topic water is the most represented. However, the terms system, resource, model, study, change, development, and management also appear to be very important, which indi- cates the importance of a holistic approach to the topic. In total 9 clusters could be identified at the different levels. It can be seen that three clusters form well. For the others, a rather diffuse picture can be observed. In order to find out which topics are hidden behind the individual clusters, 6 publications from each cluster were subjected to a more detailed examination. With these steps, a number of 54 publications were identified for de- tailed consideration. The modeling approaches that are currently being applied in research can be classified into domain-specific tools (e. g. global water models, crop models or global climate models) and into more general tools to perform for example a life cycle analysis, spatial analysis using geographic information system, or system dynamics for a general understanding of the links between the domains. With the domain-specific tools, detailed research questions can be addressed to answer questions for a specific domain. However, these tools have the disadvantage that especially the links between the sectors food, energy, and water are not fully considered. Many implementations that are made today are at lowest level (micro) relate to bounded spatial areas and are derived from macro and meso level goals.
Literature reviews are essential for any scientific work, both as part of a dissertation or as a stand-alone work. Scientists benefit from the fact that more and more literature is available in electronic form, and finding and accessing relevant literature has become more accessible through scientific databases. However, a traditional literature review method is characterized by a highly manual process, while technologies and methods in big data, machine learning, and text mining have advanced. Especially in areas where research streams are rapidly evolving, and topics are becoming more comprehensive, complex, and heterogeneous, it is challenging to provide a holistic overview and identify research gaps manually. Therefore, we have developed a framework that supports the traditional approach of conducting a literature review using machine learning and text mining methods. The framework is particularly suitable in cases where a large amount of literature is available, and a holistic understanding of the research area is needed. The framework consists of several steps in which the critical mind of the scientist is supported by machine learning. The unstructured text data is transformed into a structured form through data preparation realized with text mining, making it applicable for various machine learning techniques. A concrete example in the field of smart cities makes the framework tangible.
In this paper we presented the results of the workshop with the topic: Co-creation in citizen science (CS) for the development of climate adaptation measurements - Which success factors promote, and which barriers hinder a fruitful collaboration and co-creation process between scientists and volunteers? Under consideration of social, motivational, technical/technological and legal factors., which took place at the CitSci2022. We underlined the mentioned factors in the work with scientific literature. Our findings suggest that a clear communication strategy of goals and how citizen scientists can contribute to the project are important. In addition, they have to feel include and that the contribution makes a difference. To achieve this, it is critical to present the results to the citizen scientists. Also, the relationship between scientist and citizen scientists are essential to keep the citizen scientists engaged. Notification of meetings and events needs to be made well in advance and should be scheduled on the attendees' leisure time. The citizen scientists should be especially supported in technical questions. As a result, they feel appreciated and remain part of the project. For legal factors the current General Data Protection Regulation was considered important by the participants of the workshop. For the further research we try to address the individual points and first of all to improve our communication with the citizen scientist about the project goals and how they can contribute. In addition, we should better share the achieved results.
The rapid development and growth of knowledge has resulted in a rich stream of literature on various topics. Information systems (IS) research is becoming increasingly extensive, complex, and heterogeneous. Therefore, a proper understanding and timely analysis of the existing body of knowledge are important to identify emerging topics and research gaps. Despite the advances of information technology in the context of big data, machine learning, and text mining, the implementation of systematic literature reviews (SLRs) is in most cases still a purely manual task. This might lead to serious shortcomings of SLRs in terms of quality and time. The outlined approach in this paper supports the process of SLRs with machine learning techniques. For this purpose, we develop a framework with embedded steps of text mining, cluster analysis, and network analysis to analyze and structure a large amount of research literature. Although the framework is presented using IS research as an example, it is not limited to the IS field but can also be applied to other research areas.