Refine
Document Type
- Journal article (2)
Language
- English (2)
Has full text
- yes (2)
Is part of the Bibliography
- yes (2)
Institute
- Technik (2)
Publisher
With the continuous development of economy, consumers pay more attention to the demand for personalization clothing. However, the recommendation quality of the existing clothing recommendation system is not enough to meet the user’s needs. When browsing online clothing, facial expression is the salient information to understand the user’s preference. In this paper, we propose a novel method to automatically personalize clothing recommendation based on user emotional analysis. Firstly, the facial expression is classified by multiclass SVM. Next, the user’s multi-interest value is calculated using expression intensity that is obtained by hybrid RCNN. Finally, the multi-interest value is fused to carry out personalized recommendation. The experimental results show that the proposed method achieves a significant improvement over other algorithms.
Annotations of character IDs in news images are critical as ground truth for news retrieval and recommendation system. Universality and accuracy optimization of deep neural network models constitutes the key technology to improve the precision and computing efficiency of automatic news character identification, which is attracting increased attention globally. This paper explores the optimized deep neural network model for automatic focus personage identification in multi-lingual news. First, the face model of the focus personage is trained by using the corresponding face images from German news as positive samples. Next, the scheme of Recurrent Convolutional Neural Network (RCNN) + Bi-directional Long-Short Term Memory (Bi-LSTM) + Conditional Random Field (CRF) is utilized to label the focus name, and the RCNN-RCNN encoder–decoder is applied to translate names of people into multiple languages. Third, face features are described by combining the advantages of Local Gabor Binary Pattern Histogram Sequence (LGBPHS) and RCNN, and iterative quantization (ITQ) is used to binarize codes. Finally, a name semantic network is built for different domains. Experiments are performed on a dataset which comprises approximately 100,000 news images. The experimental results demonstrate that the proposed method achieves a significant improvement over other algorithms.