Refine
Document Type
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Informatik (3)
Publisher
- SCITEPRESS (2)
- ACM (1)
Representing users within an immersive virtual environment is an essential functionality of a multi-person virtual reality system. Especially when communicative or collaborative tasks must be performed, there exist challenges about realistic embodying and integrating such avatar representations. A shared comprehension of local space and non-verbal communication (like gesture, posture or self-expressive cues) can support these tasks. In this paper, we introduce a novel approach to create realistic, video-texture based avatars of colocated users in real-time and integrate them in an immersive virtual environment. We show a straight forward and low-cost hard- and software solution to do so. We discuss technical design problems that arose during implementation and present a qualitative analysis on the usability of the concept from a user study, applying it to a training scenario in the automotive sector.
Virtual Reality (VR) technology has the potential to support knowledge communication in several sectors. Still, when educators make use of immersive VR technology in favor of presenting their knowledge, their audience within the same room may not be able to see them anymore due to wearing head-mounted displays (HMDs). In this paper, we propose the Avatar2Avatar system and design, which augments the visual aspect during such a knowledge presentation. Avatar2Avatar enables users to see both a realistic representation of their respective counterpart and the virtual environment at the same time. We point out several design aspects of such a system and address design challenges and possibilities that arose during implementation. We specifically explore opportunities of a system design for integrating 2D video-avatars in existing roomscale VR setups. An additional user study indicates a positive impact concerning spatial presence when using Avatar2Avatar.
Painting galleries typically provide a wealth of data composed of several data types. Those multivariate data are too complex for laymen like museum visitors to first, get an overview about all paintings and to look for specific categories. Finally, the goal is to guide the visitor to a specific painting that he wishes to have a more closer look on. In this paper we describe an interactive visualization tool that first provides such an overview and lets people experiment with the more than 41,000 paintings collected in the web gallery of art. To generate such an interactive tool, our technique is composed of different steps like data handling, algorithmic transformations, visualizations, interactions, and the human user working with the tool with the goal to detect insights in the provided data. We illustrate the usefulness of the visualization tool by applying it to such characteristic data and show how one can get from an overview about all paintings to specific paintings.