Refine
Document Type
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Technik (3)
Publisher
- IEEE (3)
This paper evaluates experimentally the susceptibility of IT-networks under influences and the threats of HPEM (High Power Electromagnetic) and IEMI (Intentional Electromagnetic Interferences). As HPEM source a PBG 5 (Pulse Burst Generator) adapted to a TEM (Transversal Electromagnetic) Horn type antenna and a 90 cm IRA (Impulse Radiating Antenna) type antenna is used. Different network cable types and categories with different lengths are used. The immunity of the IT network is examined and the breakdown failure rate of the system is defined for a PRF (Pulse Repetition Frequency) of 500 s-1 in duration of 10 seconds. Series of measurements were carried out and disturbances of keyboards, mouse, switches, distortions on monitors and failures of the IT network and, even crash of PCs were observed. It is shown amongst other that by increasing the pulse repetition rate or frequency, generic test IT-networks are more susceptible to interference. Obtained results provide another view of the susceptibility analysis of modern generic IT-networks against UWB-Threats.
The possibility to bring the interference source, close to the potential target is characterized by the property of the source as stationary, portable, mobile, very mobile and highly mobile [3]. Starting from the existing and well-known IEME interference or IEMI (Intentional Electromagnetic Interference) and the already existing classifications an analysis of methods based on a comparative study of the methods used to classify the intentional EM environment is carried out, which takes into account the frequency, the cost, the amplitude of the noise signal, the radiated power and the energy of a pulse of radiation.
This paper reports an analysis of application and impact of FMEA on susceptibility of generic IT-networks. It is not new that in communication system, the frequency and the data transmission rate play a very important role. The rapid increase in miniaturization of electronic devices leads to very sensitivity against electromagnetic interference. Since the IT network with the data transfer rate makes a huge contribution to this development it is very important to monitor their functionality. Therefore, tests are performed to observe and ensure the data transfer rate of IT networks against IEMI. A fault tree model is presented and observed effects during radiation of disturbance on complex system by a HPEM interference sources are described using a continuous and consistent model of the physical layer to the application layer.