Refine
Document Type
- Article (4)
- Part of a Book (1)
This review gives a short overview of the physical processes involved in the formation of the polyelectrolyte multilayers (PEMs) and their destruction. These two processes are vital for the formation of PEMs with desired physical and chemical structures, and for loading them with active substances and their spatial controlled release. It includes a survey of the physical and chemical properties that are key points for controlling film nanostructure in relation to biological processes and different possibilities for controlling cell behavior by means of film composition, bioactivity, mechanical properties, and three-dimensional organization.
Polyelectrolyte multi-layer (PEM) coatings are prepared by alternative deposition of single polyelectrolyte monolayers on charged surfaces using the Layer-by-Layer (LbL) dip coating procedure. These are nanometre scaled coatings which allow fulfilling of different technical or biological requirements. The build-up process is based on selfassembly and self organization of polycations and polyanions on different substrates including complex geometrical structures and even closed volumes, forming homogeneous layer without defects. Depending on the proper selection of the applied polyelectrolytes, coatings with different stabilities can be prepared. Some of the coatings are stable and cannot be removed from the surface. Others are degradable and can be used as systems for controlled local drug delivery. Here we summarise the results of our experience in preparation of PEM coatings with different functionalities. PEM coatings can be used as controllable delivery system for siRNA polyplexes. They can be used to control the adhesion of different cell types on the surfaces and support e.g. the endothelialisation process on cardio-vascular medical devices as e.g. stents or reduce the immunological response of the tissue after implantation. We summarise results from physical characterisation of the coatings (e.g. film thickness, roughness, electrical charge and hydrophilicity) combined with in-vitro biological studies on adhesion of HUVEC cells.
In this study, a novel strategy has been developed for the assembly of polyelectrolyte multilayer (PEM) on CaCO3 templates in acidic pH solutions, where consecutive polyelectrolyte layers (heparin/poly(allylamine hydrochloride) or heparin/chitosan) were deposited on PEM hollow microcapsules established previously on CaCO3 templates. The PEM build-up, hollow capsule characterization and successful encapsulation of fluorescein 5(6)-isothiocyanate (FITC)-Dextran by coprecipitation with CaCO3 are demonstrated. Improvement by the removal of CaCO3 core was achieved while the depositions. In the course of the release profile, high retardation for encapsulated FITC-Dextran was observed. The combined shell capsules system is a significant trait that has potential use in tailoring functional layer-by-layer capsules as intelligent drug delivery vehicles where the preliminary in vitro tests showed the responsiveness on the enzymes.
Background/Aim: The aim of this study was the development of a new osteoconductivity index to determine the bone healing capacities of bone substitute materials (BSM) on the basis of 3D microcomputed tomographic (μ-CT) data. Materials and Methods: Sinus biopsies were used for the comparative analysis of the integration behavior of two xenogeneic BSM (cerabone® and Bio Oss®). 3D μ-CT and data sets from histomorphometrical measurements based on 2D histological slices were used to measure the bone-material-contact and the tissue distribution within the biopsies. The tissue reactions to both BSM were microscopically analyzed. Results: The 3D and 2D results of the osteoconductivity measurements showed comparable material-bone contacts for both BSM, but the 2D data were significantly lower. The same results were found when tissue distribution was measured in both groups. The histopathological analysis showed comparative tissue reactions in both BSM. Conclusion: Osteoconductivity index is a reliable measurement parameter for determining the healing capacities of BSM. The observed differences between both measurement methods could be assigned to the resolution capacity of μ-CT data that did not allow for a precise interface distinction between both BSM and bone tissue. Histomorphometrical data based on histological slides still allow for a more exact evaluation.
The present publication reports the purification effort of two natural bone blocks, that is, an allogeneic bone block (maxgraft®, botiss biomaterials GmbH, Zossen, Germany) and a xenogeneic block (SMARTBONE®, IBI S.A., Mezzovico Vira, Switzerland) in addition to previously published results based on histology. Furthermore, specialized scanning electron microscopy (SEM) and in vitro analyses (XTT, BrdU, LDH) for testing of the cytocompatibility based on ISO 10993-5/-12 have been conducted. The microscopic analyses showed that both bone blocks possess a trabecular structure with a lamellar subarrangement. In the case of the xenogeneic bone block, only minor remnants of collagenous structures were found, while in contrast high amounts of collagen were found associated with the allogeneic bone matrix. Furthermore, only island-like remnants of the polymer coating in case of the xenogeneic bone substitute seemed to be detectable. Finally, no remaining cells or cellular remnants were found in both bone blocks. The in vitro analyses showed that both bone blocks are biocompatible. Altogether, the purification level of both bone blocks seems to be favorable for bone tissue regeneration without the risk for inflammatory responses or graft rejection. Moreover, the analysis of the maxgraft® bone block showed that the underlying purification process allows for preserving not only the calcified bone matrix but also high amounts of the intertrabecular collagen matrix.