Refine
Document Type
- Conference proceeding (9)
- Journal article (1)
Language
- English (10)
Has full text
- yes (10)
Is part of the Bibliography
- yes (10)
Institute
- Technik (10)
Publisher
- IEEE (7)
- VDE Verlag GmbH (2)
- De Gruyter Open (1)
This paper presents an approach for the implementation of a modular and scalable power electronics device for controlling electric drives in the field of electric vehicles using wide bandgap semiconductor devices. The main idea is to achieve the required output currents or voltages by connecting adequately designed hardware modules in parallel or in series. This particular design is based on the fact that the single modules generate a continuous and specified output voltage from a given dc voltage, e.g. an intermediate circuit or battery voltage. The main benefit is, that different current or voltage requirements can be satisfied based on a single module thus decreasing development and production costs. The current paper focuses on the connection in parallel of such modules. A control architecture is illustrated and a first proof of concept is given.
The design process for a single phase, smart, universal charger for light electric vehicles, is presented. With a step up, power factor correction circuit, followed by a phase shifted, full bridge converter, with synchronous rectification on the secondary side. Due to the resistor-capacitor-diode snubber on the secondary side, the current peak at the start of power transfer, leads to false triggering during light load control with peak current mode control. The solution developed for light loads, is to change from peak current control to voltage control. This is achieved by limiting the maximum phase shift, instead of changing the reference value. For the power factor correction stage, measured and calculated efficiencies are compared as a function of the output power. The voltage and current waveforms are shown for the power factor correction circuit, and for the phase shifted bridge, the measured current waveform is compared with simulation.
This paper illustrates the implementation of series connected hardware modules as part of a scalable and modular power electronics device, which is ideally suited in the field of electric vehicles using wide bandgap semiconductor devices. The main benefit of the modular concept is that different current or voltage requirements can be satisfied based on the appropriate series or parallel connection of single modules. The particular design is based on the fact that the single modules generate a continuous and specified output voltage from a given dc voltage. The current work focuses on a brief classification of this work in different series connected concepts of power converters and in particular on an active damping approach for the series connected LC output filters based on inductor current feedback.
This contribution presents a three-phase power stage for motor control with continuous output voltages using wide bandgap semiconductors and an asynchronous delta-sigma based switching signal generation. The focus of the paper is on an active damping approach for the LC output filter based on inductor current feedback.
This paper presents a laboratory experiment integrating the fields of electronics design, power electronics and drive control. The aim of this experiment is first to illustrate the need for a deep knowledge and the challenges in power electronics and its applications, in this particular case for drive control. The different tasks in this experiment are executed on a complete setup for a brushless dc motor test bench. The tasks assigned to the students are designed such that, in some tasks the knowledge from a particular field, power electronics, electronic design or drive control is deepened, whereas in other tasks the knowledge from more than one of these fields is needed to solve the given problem. Thus, the experiment trains students in the particular domains but illustrates as well the links between power electronics, electronic design and drive control.
This paper presents a modular and scalable power electronics concept for motor control with continuous output voltage. In contrast to multilevel concepts, modules with continuous output voltage are connected in series. The continuous output voltage of each module is obtained by using gallium nitride (GaN) high electron motility transistor (HEMT)s as switches inside the modules with a switching frequency in the range between 500 kHz and 1 MHz. Due to this high switching frequency a LC filter is integrated into the module resulting in a continuous output voltage. A main topic of the paper is the active damping of this LC output filter for each module and the analysis of the series connection of the damping behaviour. The results are illustrated with simulations and measurements.
The current paper proposes a design method for an active damping approach for LC output filters in a power stage for motor control with continuous output voltage. The power stage uses GaN-HEMTs and operates at switching frequencies in a range between 500 kHz and 1MHz. The active damping of the output filter is achieved here by a feedback of the filter inductor current using a high-pass structure. The paper discusses the impact of this feedback on the system behavior and proposes a design method.
Class Phi2 amplifier using GaN HEMTs at 13.56MHz with tuned transformer for wireless power transfer
(2022)
This paper discusses a design procedure of a wireless power transfer system at a RF switching frequency of 13.56MHz. The wireless power transfer amplifier uses GaN HEMTs in aClass phi2 topology and is designed in order to achieve high efficiency and high power density. A design method for the load over a certain bandwidth is presented for a transformer with its tuning network.