Refine
Document Type
- Journal article (1)
- Book chapter (1)
- Conference proceeding (1)
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Informatik (3)
Publisher
- Elsevier (1)
- IEEE (1)
- IGI Global (1)
In this paper we describe an interactive web-based visual analysis tool for Formula one races. It first provides an overview about all races on a yearly basis in a calendar-like representation. From this starting point, races can be selected and visually inspected in detail. We support a dynamic race position diagram as well as a more detailed lap times line plot for showing the drivers’ lap times in comparison. Many interaction techniques are supported like selections, filtering, highlighting, color coding, or details-on demand. We illustrate the usefulness of our visualization tool by applying it to a Formula one dataset while we describe the different dynamic visual racing patterns for a number of selected races and drivers.
Fatigue and drowsiness are responsible for a significant percentage of road traffic accidents. There are several approaches to monitor the driver's drowsiness, ranging from the driver's steering behavior to the analysis of the driver, e.g. eye tracking, blinking, yawning, or electrocardiogram (ECG). This paper describes the development of a low-cost ECG sensor to derive heart rate variability (HRV) data for drowsiness detection. The work includes hardware and software design. The hardware was implemented on a printed circuit board (PCB) designed so that the board can be used as an extension shield for an Arduino. The PCB contains a double, inverted ECG channel including low-pass filtering and provides two analog outputs to the Arduino, which combines them and performs the analog-to-digital conversion. The digital ECG signal is transferred to an NVidia embedded PC where the processing takes place, including QRS-complex, heart rate, and HRV detection as well as visualization features. The resulting compact sensor provides good results in the extraction of the main ECG parameters. The sensor is being used in a larger frame, where facial-recognition-based drowsiness detection is combined with ECG-based detection to improve the recognition rate under unfavorable light or occlusion conditions.
Formula One races provide a wealth of data worth investigating. Although the time-varying data has a clear structure, it is pretty challenging to analyze it for further properties. Here the focus is on a visual classification for events, drivers, as well as time periods. As a first step, the Formula One data is visually encoded based on a line plot visual metaphor reflecting the dynamic lap times, and finally, a classification of the races based on the visual outcomes gained from these line plots is presented. The visualization tool is web-based and provides several interactively linked views on the data; however, it starts with a calendar-based overview representation. To illustrate the usefulness of the approach, the provided Formula One data from several years is visually explored while the races took place in different locations. The chapter discusses algorithmic, visual, and perceptual limitations that might occur during the visual classification of time-series data such as Formula One races.