Refine
Document Type
- Journal article (3)
Is part of the Bibliography
- yes (3)
Institute
- Life Sciences (3)
Publisher
- Elsevier (1)
- Institut für Holztechnologie (1)
- Tech Science Press (1)
Here, the effects of substituting portions of fossil-based phenol in phenol formaldehyde resin by renewable lignin from two different sources are investigated using a factorial screening experimental design. Among the resins consumed by the wood-based industry, phenolics are one of the most important types used for impregnation, coating or gluing purposes. They are prepared by condensing phenol with formaldehyde (PF). One major use of PF is as matrix polymer for decorative laminates in exterior cladding and wet-room applications. Important requirements for such PFs are favorable flow properties (low viscosity), rapid curing behavior (high reactivity) and sufficient self-adhesion capacity (high residual curing potential). Partially substituting phenol in PF with bio-based phenolic co-reagents like lignin modifies the physicochemical properties of the resulting resin. In this study, phenol-formaldehyde formulations were synthesized where either 30% or 50% (in weight) of the phenol monomer were substituted by either sodium lignosulfonate or Kraft lignin. The effect of modifying the lignin material by phenolation before incorporation into the resin synthesis was also investigated. The resins so obtained were characterized by Fourier Transform Infra-Red (FTIR) spectroscopy, Size Exclusion Chromatography (SEC), Differential Scanning Calorimetry (DSC), rheology, and measurements of contact angle and surface tension using the Wilhelmy plate method and drop shape analysis.
Impact of phenolic resin preparation on its properties and its penetration behavior in Kraft paper
(2018)
The core of decorative laminates is generally made of stacked Kraft paper sheets impregnated with a phenolic resin. As the impregnation process in industry is relatively fast, new methods need to be developed to characterize it for different paper-resin systems. Several phenolic resins were synthesized with the same Phenol:Formaldehyde ratio of 1:1.8 and characterized by Fourier Transform Infrared Spectrometry (FTIR) as well as Size-Exclusion Chromatography (SEC). In addition, their viscosities and surface tensions when diluted in methanol to 45% of solid content were measured. The capacity of each resin to penetrate a Kraft paper sheet was characterized using a new method, which measures the conductivities induced by the liquid resin crossing the paper substrate. With this method, crossing times could be measured with a good accuracy. Surprisingly, the results showed that the penetration time of the resin samples is not correlated to the viscosity values, but rather to the surface tension characteristics and the chemical characteristics of paper. Furthermore, some resins had a higher swelling effect on the fibers that delayed the crossing of the liquid through the paper.
In der vorliegenden Studie werden typische, kommerziell erhältliche und mit unterschiedlichen Lacksystemen beschichtete MDF für den Küchenbereich hinsichtlich ihres Emissionsverhaltens und deren Oberflächeneigenschaften verglichen: wasserlack-, lösungsmittellack- und pulverlackbasierte Oberflächen. Es zeigt sich, dass eine Pulverlackierung insgesamt zu höherwertigen Produkten führt, sowohl in Bezug auf Kratzbeständigkeit, Haftung und Beständigkeit gegen feuchte Hitze als auch insbesondere in Bezug auf VOC-Emissionen. Die Wasserlackoberflächen schnitten hinsichtlich ihres Emissionsverhaltens deutlich besser ab als die lösemittelbasierten Beschichtungssysteme und zeigten in Bezug auf die Oberflächeneigenschaften mit einer Ausnahme vergleichbare Kennwerte.