Refine
Document Type
- Conference proceeding (4)
- Journal article (2)
- Book chapter (1)
Language
- English (7)
Has full text
- yes (7)
Is part of the Bibliography
- yes (7)
Institute
- Informatik (7)
Publisher
- Springer (5)
- Hochschule Reutlingen (1)
- MDPI (1)
To evaluate the quality of sleep, it is important to determine how much time was spent in each sleep stage during the night. The gold standard in this domain is an overnight polysomnography (PSG). But the recording of the necessary electrophysiological signals is extensive and complex and the environment of the sleep laboratory, which is unfamiliar to the patient, might lead to distorted results. In this paper, a sleep stage detection algorithm is proposed that uses only the heart rate signal, derived from electrocardiogram (ECG), as a discriminator. This would make it possible for sleep analysis to be performed at home, saving a lot of effort and money. From the heart rate, using the fast Fourier transformation (FFT), three parameters were calculated in order to distinguish between the different sleep stages. ECG data along with a hypnogram scored by professionals was used from Physionet database, making it easy to compare the results. With an agreement rate of 41.3%, this approach is a good foundation for future research.
The investigation of stress requires to distinguish between stress caused by physical activity and stress that is caused by psychosocial factors. The behaviour of the heart in response to stress and physical activity is very similar in case the set of monitored parameters is reduced to one. Currently, the differentiation remains difficult and methods which only use the heart rate are not able to differentiate between stress and physical activity, without using additional sensor data input. The approach focusses on methods which generate signals providing characteristics that are useful for detecting stress, physical activity, no activity and relaxation.
Stress is recognized as a factor of predominant disease and in the future the costs for treatment will increase. The presented approach tries to detect stress in a very basic and easy to implement way, so that the cost for the device and effort to wear it remain low. The user should benefit from the fact that the system offers an easy interface reporting the status of his body in real time. In parallel, the system provides interfaces to pass the obtained data forward for further processing and (professional) analyses, in case the user agrees. The system is designed to be used in every day’s activities and it is not restricted to laboratory use or environments. The implementation of the enhanced prototype shows that the detection of stress and the reporting can be managed using correlation plots and automatic pattern recognition even on a very light weighted microcontroller platform.
Sleep is an important aspect in life of every human being. The average sleep duration for an adult is approximately 7 h per day. Sleep is necessary to regenerate physical and psychological state of a human. A bad sleep quality has a major impact on the health status and can lead to different diseases. In this paper an approach will be presented, which uses a long-term monitoring of vital data gathered by a body sensor during the day and the night supported by mobile application connected to an analyzing system, to estimate sleep quality of its user as well as give recommendations to improve it in real-time. Actimetry and historical data will be used to improve the individual recommendations, based on common techniques used in the area of machine learning and big data analysis.
Stress is recognized as a predominant disease with raising costs for rehabilitation and treatment. Currently there are several different approaches that can be used for determining and calculating the stress levels. Usually the methods for determining stress are divided in two categories. The first category do not require any special equipment for measuring the stress. This category useless the variation in the behaviour patterns that occur while stress. The core disadvantage for the category is their limitation to specific use case. The second category uses laboratories instruments and biological sensors. This category allow to measure stress precisely and proficiently but on the same time they are not mobile and transportable and do not support real-time feedback. This work presents a mobile system that provides the calculation of stress. For achieving this, the of a mobile ECG sensor is analysed, processed and visualised over a mobile system like a smartphone. This work also explains the used stress measurement algorithm. The result of this work is a portable system that can be used with a mobile system like a smartphone as visual interface for reporting the current stress level.
Sleep is extremely important for physical and mental health. Although polysomnography is an established approach in sleep analysis, it is quite intrusive and expensive. Consequently, developing a non-invasive and non-intrusive home sleep monitoring system with minimal influence on patients, that can reliably and accurately measure cardiorespiratory parameters, is of great interest. The aim of this study is to validate a non-invasive and unobtrusive cardiorespiratory parameter monitoring system based on an accelerometer sensor. This system includes a special holder to install the system under the bed mattress. The additional aim is to determine the optimum relative system position (in relation to the subject) at which the most accurate and precise values of measured parameters could be achieved. The data were collected from 23 subjects (13 males and 10 females). The obtained ballistocardiogram signal was sequentially processed using a sixth-order Butterworth bandpass filter and a moving average filter. As a result, an average error (compared to reference values) of 2.24 beats per minute for heart rate and 1.52 breaths per minute for respiratory rate was achieved, regardless of the subject’s sleep position. For males and females, the errors were 2.28 bpm and 2.19 bpm for heart rate and 1.41 rpm and 1.30 rpm for respiratory rate. We determined that placing the sensor and system at chest level is the preferred configuration for cardiorespiratory measurement. Further studies of the system’s performance in larger groups of subjects are required, despite the promising results of the current tests in healthy subjects.
The purpose of this paper is to examine the effects of perceived stress on traffic and road safety. One of the leading causes of stress among drivers is the feeling of having a lack of control during the driving process. Stress can result in more traffic accidents, an increase in driver errors, and an increase in traffic violations. To study this phenomenon, the Stress Perceived Questionnaire (PSQ) was used to evaluate the perceived stress while driving in a simulation. The study was conducted with participants from Germany, and they were grouped into different categories based on their emotional stability. Each participant was monitored using wearable devices that measured their instantaneous heart rate (HR). The preference for wearable devices was due to their non-intrusive and portable nature. The results of this study provide an overview of how stress can affect traffic and road safety, which can be used for future research or to implement strategies to reduce road accidents and promote traffic safety.