Refine
Document Type
- Conference Proceeding (48)
- Article (23)
- Part of a Book (3)
Is part of the Bibliography
- yes (74)
Institute
- Informatik (73)
- Technik (1)
Publisher
- Springer (23)
- Elsevier (15)
- Hochschule Reutlingen (10)
- IEEE (9)
- MDPI (3)
- Università Politecnica delle Marche (3)
- HTWG Konstanz (2)
- ACM (1)
- AIP Publishing (1)
- BioMed Central (1)
The impact of stress of every human being has become a serious problem. Reported impact on persons are a higher rate or health disorders like heart problems, obesity, asthma, diabetes, depressions and many others. An individual in a stressful situation has to deal with altered cognition as well as an affected decision making skill and problem solving. This could lead to a higher risk for accidents in dynamic environments such as automotive. Different papers faced the estimation as well as prediction of drivers’ stress level during driving. Another important question is not only the stress level of the driver himself, but also the influence on and of a group of other drivers in the near area. This paper proposes a system, which determines a group of drivers in a near area as clusters and it derives or computes the individual stress level. This information will be analyzed to generate a stress map, which represents a graphical view about road section with a higher stress influence. Aggregated data can be used to generate navigation routes with a lower stress influence as well as recommend driving behavior to decrease stress influenced driving as well as improve road safety.
This paper presents a new European initiative to support the sustainable empowerment of the ageing society. Empowerment in this context represents the capability to have a self-determined, autonomous and healthy life. The paper justifies the need of such an initiative and highlights the role that telemedicine and ambient assisted living can play in this environment.
Sleep is an important aspect in life of every human being. The average sleep duration for an adult is approximately 7 h per day. Sleep is necessary to regenerate physical and psychological state of a human. A bad sleep quality has a major impact on the health status and can lead to different diseases. In this paper an approach will be presented, which uses a long-term monitoring of vital data gathered by a body sensor during the day and the night supported by mobile application connected to an analyzing system, to estimate sleep quality of its user as well as give recommendations to improve it in real-time. Actimetry and historical data will be used to improve the individual recommendations, based on common techniques used in the area of machine learning and big data analysis.
Nowadays there is a rich diversity of sleep monitoring systems available on the market. They promise to offer information about sleep quality of the user by recording a limited number of vital signals, mainly heart rate and body movement. Typically, fitness trackers, smart watches, smart shirts, smartphone applications or patches do not provide access to the raw sensor data. Moreover, the sleep classification algorithm and the agreement ratio with the gold standard, polysomnography (PSG) are not disclosed. Some commercial systems record and store the data on the wearable device, but the user needs to transfer and import it into specialised software applications or return it to the doctor, for clinical evaluation of the data set. Thus an immediate feedback mechanism or the possibility of remote control and supervision are lacking. Furthermore, many such systems only distinguish between sleep and wake states, or between wake, light sleep and deep sleep. It is not always clear how these stages are mapped to the four known sleep stages: REM, NREM1, NREM2, NREM3-4. [1] The goal of this research is to find a reduced complexity method to process a minimum number of bio vital signals, while providing accurate sleep classification results. The model we propose offers remote control and real time supervision capabilities, by using Internet of Things (IoT) technology. This paper focuses on the data processing method and the sleep classification logic. The body sensor network representing our data acquisition system will be described in a separate publication. Our solution showed promising results and a good potential to overcome the limitations of existing products. Further improvements will be made and subjects with different age and health conditions will be tested.
Stress is becoming an important topic in modern life. The influence of stress results in a higher rate of health disorders such as burnout, heart problems, obesity, asthma, diabetes, depressions and many others. Furthermore individual’s behavior and capabilities could be directly affected leading to altered cognition, inappropriate decision making and problem solving skills. In a dynamic and unpredictable environment, such as automotive, this can result in a higher risk for accidents. Different papers faced the estimation as well as prediction of drivers’ stress level during driving. Another important question is not only the stress level of the driver himself, but also the influence on and of a group of other drivers in the near area. This paper proposes a system, which determines a group of drivers in a near area as clusters and it derives the individual stress level. This information will be analyzed to generate a stress map, which represents a graphical view about road section with a higher stress influence. Aggregated data can be used to generate navigation routes with a lower stress influence to decrease stress influenced driving as well as improve road safety.
Stress is recognized as a predominant disease with raising costs for rehabilitation and treatment. Currently there are several different approaches that can be used for determining and calculating the stress levels. Usually the methods for determining stress are divided in two categories. The first category do not require any special equipment for measuring the stress. This category useless the variation in the behaviour patterns that occur while stress. The core disadvantage for the category is their limitation to specific use case. The second category uses laboratories instruments and biological sensors. This category allow to measure stress precisely and proficiently but on the same time they are not mobile and transportable and do not support real-time feedback. This work presents a mobile system that provides the calculation of stress. For achieving this, the of a mobile ECG sensor is analysed, processed and visualised over a mobile system like a smartphone. This work also explains the used stress measurement algorithm. The result of this work is a portable system that can be used with a mobile system like a smartphone as visual interface for reporting the current stress level.
Stress is recognized as a factor of predominant disease and in the future the costs for treatment will increase. The presented approach tries to detect stress in a very basic and easy to implement way, so that the cost for the device and effort to wear it remain low. The user should benefit from the fact that the system offers an easy interface reporting the status of his body in real time. In parallel, the system provides interfaces to pass the obtained data forward for further processing and (professional) analyses, in case the user agrees. The system is designed to be used in every day’s activities and it is not restricted to laboratory use or environments. The implementation of the enhanced prototype shows that the detection of stress and the reporting can be managed using correlation plots and automatic pattern recognition even on a very light weighted microcontroller platform.
An ongoing challenge in our days is to lower the impact on the quality of life caused by dysfunctionality through individual support. With the background of an aging society and continuous increases in costs for care, a holistic solution is needed. This solution must integrate individual needs and preferences, locally available possibilities, regional conditions, professional and informal caregivers and provide the flexibility to implement future requirements. The proposed model is a result of a common initiative to overcome the major obstacles and to center a solution on individual needs caused by dysfunctionality.
To evaluate the quality of a person´s sleep it is essential to identify the sleep stages and their durations. Currently, the gold standard in terms of sleep analysis is overnight polysomnography (PSG), during which several techniques like EEG (eletroencephalogram), EOG (electrooculogram), EMG (electromyogram), ECG (electrocardiogram), SpO2 (blood oxygen saturation) and for example respiratory airflow and respiratory effort are recorded. These expensive and complex procedures, applied in sleep laboratories, are invasive and unfamiliar for the subjects and it is a reason why it might have an impact on the recorded data. These are the main reasons why low-cost home diagnostic systems are likely to be advantageous. Their aim is to reach a larger population by reducing the number of parameters recorded. Nowadays, many wearable devices promise to measure sleep quality using only the ECG and body-movement signals. This work presents an android application developed in order to proof the accuracy of an algorithm published in the sleep literature. The algorithm uses ECG and body movement recordings to estimate sleep stages. The pre-recorded signals fed into the algorithm have been taken from physionet1 online database. The obtained results have been compared with those of the standard method used in PSG. The mean agreement ratios between the sleep stages REM, Wake, NREM-1, NREM-2 and NREM-3 were 38.1%, 14%, 16%, 75% and 54.3%.
The proposed approach applies current unsupervised clustering approaches in a different dynamic manner. Instead of taking all the data as input and finding clusters among them, the given approach clusters Holter ECG data (longterm electrocardiography data from a holter monitor) on a given interval which enables a dynamic clustering approach (DCA). Therefore advanced clustering techniques based on the well known Dynamic TimeWarping algorithm are used. Having clusters e.g. on a daily basis, clusters can be compared by defining cluster shape properties. Doing this gives a measure for variation in unsupervised cluster shapes and may reveal unknown changes in healthiness. Embedding this approach into wearable devices offers advantages over the current techniques. On the one hand users get feedback if their ECG data characteristic changes unforeseeable over time which makes early detection possible. On the other hand cluster properties like biggest or smallest cluster may help a doctor in making diagnoses or observing several patients. Further, on found clusters known processing techniques like stress detection or arrhythmia classification may be applied.