Refine
Document Type
- Conference proceeding (55)
- Journal article (40)
- Book chapter (10)
Is part of the Bibliography
- yes (105)
Institute
- Informatik (104)
- Technik (1)
Publisher
- Springer (27)
- Elsevier (26)
- IEEE (13)
- Hochschule Reutlingen (10)
- Università Politecnica delle Marche (9)
- MDPI (8)
- HTWG Konstanz (2)
- American Institute of Physics (1)
- Association for Computing Machinery (1)
- CRC Press (1)
The impact of stress of every human being has become a serious problem. Reported impact on persons are a higher rate or health disorders like heart problems, obesity, asthma, diabetes, depressions and many others. An individual in a stressful situation has to deal with altered cognition as well as an affected decision making skill and problem solving. This could lead to a higher risk for accidents in dynamic environments such as automotive. Different papers faced the estimation as well as prediction of drivers’ stress level during driving. Another important question is not only the stress level of the driver himself, but also the influence on and of a group of other drivers in the near area. This paper proposes a system, which determines a group of drivers in a near area as clusters and it derives or computes the individual stress level. This information will be analyzed to generate a stress map, which represents a graphical view about road section with a higher stress influence. Aggregated data can be used to generate navigation routes with a lower stress influence as well as recommend driving behavior to decrease stress influenced driving as well as improve road safety.
This paper presents a new European initiative to support the sustainable empowerment of the ageing society. Empowerment in this context represents the capability to have a self-determined, autonomous and healthy life. The paper justifies the need of such an initiative and highlights the role that telemedicine and ambient assisted living can play in this environment.
The proposed approach applies current unsupervised clustering approaches in a different dynamic manner. Instead of taking all the data as input and finding clusters among them, the given approach clusters Holter ECG data (longterm electrocardiography data from a holter monitor) on a given interval which enables a dynamic clustering approach (DCA). Therefore advanced clustering techniques based on the well known Dynamic TimeWarping algorithm are used. Having clusters e.g. on a daily basis, clusters can be compared by defining cluster shape properties. Doing this gives a measure for variation in unsupervised cluster shapes and may reveal unknown changes in healthiness. Embedding this approach into wearable devices offers advantages over the current techniques. On the one hand users get feedback if their ECG data characteristic changes unforeseeable over time which makes early detection possible. On the other hand cluster properties like biggest or smallest cluster may help a doctor in making diagnoses or observing several patients. Further, on found clusters known processing techniques like stress detection or arrhythmia classification may be applied.
Stress is becoming an important topic in modern life. The influence of stress results in a higher rate of health disorders such as burnout, heart problems, obesity, asthma, diabetes, depressions and many others. Furthermore individual’s behavior and capabilities could be directly affected leading to altered cognition, inappropriate decision making and problem solving skills. In a dynamic and unpredictable environment, such as automotive, this can result in a higher risk for accidents. Different papers faced the estimation as well as prediction of drivers’ stress level during driving. Another important question is not only the stress level of the driver himself, but also the influence on and of a group of other drivers in the near area. This paper proposes a system, which determines a group of drivers in a near area as clusters and it derives the individual stress level. This information will be analyzed to generate a stress map, which represents a graphical view about road section with a higher stress influence. Aggregated data can be used to generate navigation routes with a lower stress influence to decrease stress influenced driving as well as improve road safety.
Stress is recognized as a predominant disease with raising costs for rehabilitation and treatment. Currently there are several different approaches that can be used for determining and calculating the stress levels. Usually the methods for determining stress are divided in two categories. The first category do not require any special equipment for measuring the stress. This category useless the variation in the behaviour patterns that occur while stress. The core disadvantage for the category is their limitation to specific use case. The second category uses laboratories instruments and biological sensors. This category allow to measure stress precisely and proficiently but on the same time they are not mobile and transportable and do not support real-time feedback. This work presents a mobile system that provides the calculation of stress. For achieving this, the of a mobile ECG sensor is analysed, processed and visualised over a mobile system like a smartphone. This work also explains the used stress measurement algorithm. The result of this work is a portable system that can be used with a mobile system like a smartphone as visual interface for reporting the current stress level.
Sleep study can be used for detection of sleep quality and in general bed behaviors. These results can helpful for regulating sleep and recognizing different sleeping disorders of human. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this work is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides, these methods not only decrease practicality due to the process of having to put them on, but they are also very expensive. The system proposed in this paper classifies respiration and body movement with only one type of sensor and also in a noninvasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed excellent results in the classification of breathing rate and body movements.
To analyze the humans’ sleep it is necessary as to identify the sleep stages, occurring during the sleep, their durations and sleep cycles. The gold standard procedure for this approach is polysomnography (PSG), which classify the sleep stages based on Rechtschaffen and Kales (R-K) method. This method aside the advantages as high accuracy has however some disadvantages, among others time-consuming and uncomfortable for the patient procedure. Therefore, the development of further methods for the sleep classification in addition to PSG is a promising topic for the investigation and this work has as its aim the presentation of possible ways and goals for this development.
A sleep study is a test used to diagnose sleep disorders and is usually done in sleep laboratories. The golden standard for evaluation of sleep is overnight polysomnography (PSG). Unfortunately, in-lab sleep studies are expensive and complex procedures. Furthermore, with a minimum of 22 wire attachments to the patient for sleep recording, this medical procedure is invasive and unfamiliar for the subjects. To solve this problem, low-cost home diagnostic systems, based on noninvasive recording methods requires further researches.
For this intention it is important to find suitable bio vital parameters for classifying sleep phases WAKE, REM, light sleep and deep sleep without any physical impairment at the same time. We decided to analyse body movement (BM), respiration rate (RR) and heart rate variability (HRV) from existing sleep recordings to develop an algorithm which is able to classify the sleep phases automatically. The preliminary results of this project show that BM, RR and HRV are suitable to identify WAKE, REM and NREM stage.