Refine
Document Type
- Conference proceeding (13)
- Book chapter (2)
Language
- English (15)
Has full text
- yes (15)
Is part of the Bibliography
- yes (15)
Institute
- Informatik (15)
Publisher
- Association for Computing Machinery (3)
- IEEE (3)
- Springer (3)
- Universität Konstanz (3)
- Gesellschaft für Informatik (1)
- OpenProceedings (1)
- Universität Trier (1)
An index in a Multi-Version DBMS (MV-DBMS) has to reflect different tuple versions of a single data item. Existing approaches follow the paradigm of logically separating the tuple version data from the data item, e.g. an index is only allowed to return at most one version of a single data item (while it may return multiple data items that match a search criteria). Hence to determine the valid (and therefore visible) tuple version of a data item, the MV-DBMS first fetches all tuple versions that match the search criteria and subsequently filters visible versions using visibility checks. This involves I/O storage accesses to tuple versions that do not have to be fetched. In this vision paper we present the Multi Version Index (MV-IDX) approach that allows index-only visibility checks which significantly reduce the amount of I/O storage accesses as well as the index maintenance overhead. The MV-IDX achieves significantly lower response times and higher transactional throughput on OLTP workloads.
In this paper we present our work in progress on revisiting traditional DBMS mechanisms to manage space on native Flash and how it is administered by the DBA. Our observations and initial results show that: the standard logical database structures can be used for physical organization of data on native Flash; at the same time higher DBMS performance is achieved without incurring extra DBA overhead. Initial experimental evaluation indicates a 20% increase in transactional throughput under TPC-C, by performing intelligent data placement on Flash, less erase operations and thus better Flash longevity.
In the present tutorial we perform a cross-cut analysis of database systems from the perspective of modern storage technology, namely Flash memory. We argue that neither the design of modern DBMS, nor the architecture of flash storage technologies are aligned with each other. The result is needlessly suboptimal DBMS performance and inefficient flash utilisation as well as low flash storage endurance and reliability. We showcase new DBMS approaches with improved algorithms and leaner architectures, designed to leverage the properties of modern storage technologies. We cover the area of transaction management and multi-versioning, putting a special emphasis on: (i) version organisation models and invalidation mechanisms in multi-versioning DBMS; (ii) Flash storage management especially on append-based storage in tuple granularity; (iii) Flash-friendly buffer management; as well as (iv) improvements in the searching and indexing models. Furthermore, we present our NoFTL approach to native Flash access that integrates parts of the flash-management functionality into the DBMS yielding significant performance increase and simplification of the I/O stack. In addition, we cover the basics of building large Flash storage for DBMS and revisit some of the RAID techniques and principles.
Flash SSDs are omnipresent as database storage. HDD replacement is seamless since Flash SSDs implement the same legacy hardware and software interfaces to enable backward compatibility. Yet, the price paid is high as backward compatibility masks the native behaviour, incurs significant complexity and decreases I/O performance, making it non-robust and unpredictable. Flash SSDs are black-boxes. Although DBMS have ample mechanisms to control hardware directly and utilize the performance potential of Flash memory, the legacy interfaces and black-box architecture of Flash devices prevent them from doing so.
In this paper we demonstrate NoFTL, an approach that enables native Flash access and integrates parts of the Flashmanagement functionality into the DBMS yielding significant performance increase and simplification of the I/O stack. NoFTL is implemented on real hardware based on the OpenSSD research platform. The contributions of this paper include: (i) a description of the NoFTL native Flash storage architecture; (ii) its integration in Shore-MT and (iii) performance evaluation of NoFTL on a real Flash SSD and on an on-line data-driven Flash emulator under TPCB, C,E and H workloads. The performance evaluation results indicate an improvement of at least 2.4x on real hardware over conventional Flash storage; as well as better utilisation of native Flash parallelism.
In the present tutorial we perform a cross-cut analysis of database storage management from the perspective of modern storage technologies. We argue that neither the design of modern DBMS, nor the architecture of modern storage technologies are aligned with each other. Moreover, the majority of the systems rely on a complex multi-layer and compatibility oriented storage stack. The result is needlessly suboptimal DBMS performance, inefficient utilization, or significant write amplification due to outdated abstractions and interfaces. In the present tutorial we focus on the concept of native storage, which is storage operated without intermediate abstraction layers over an open native storage interface and is directly controlled by the DBMS.
Modern persistent Key/Value stores are designed to meet the demand for high transactional throughput and high data ingestion rates. Still, they rely on backwards-compatible storage stack and abstractions to ease space management, foster seamless proliferation and system integration. Their dependence on the traditional I/O stack has negative impact on performance, causes unacceptably high write-amplification, and limits the storage longevity.
In the present paper we present NoFTL KV, an approach that results in a lean I/O stack, integrating physical storage management natively in the Key/Value store. NoFTL-KV eliminates backwards compatibility, allowing the Key/Value store to directly consume the characteristics of modern storage technologies. NoFTLKV is implemented under RocksDB. The performance evaluation under LinkBench shows that NoFTL-KV improves transactional throughput by 33%, while response times improve up to 2.3x. Furthermore, NoFTL KV reduces write-amplification 19x and improves storage longevity by imately the same factor.
Active storage
(2018)
In brief, Active Storage refers to an architectural hardware and software paradigm, based on collocation storage and compute units. Ideally, it will allow to execute application-defined data ... within the physical data storage. Thus Active Storage seeks to minimize expensive data movement, improving performance, scalability, and resource efficiency. The effective use of Active Storage mandates new architectures, algorithms, interfaces, and development toolchains.
A transaction is a demarcated sequence of application operations, for which the following properties are guaranteed by the underlying transaction processing system (TPS): atomicity, consistency, isolation, and durability (ACID). Transactions are therefore a general abstraction, provided by TPS that simplifies application development by relieving transactional applications from the burden of concurrency and failure handling. Apart from the ACID properties, a TPS must guarantee high and robust performance (high transactional throughput and low response times), high reliability (no data loss, ability to recover last consistent state, fault tolerance), and high availability (infrequent outages, short recovery times).
The architectures and workhorse algorithms of a high-performance TPS are built around the properties of the underlying hardware. The introduction of nonvolatile memories (NVM) as novel storage technology opens an entire new problem space, with the need to revise aspects such as the virtual memory hierarchy, storage management and data placement, access paths, and indexing. NVM are also referred to as storage-class memory (SCM).
In the present paper we demonstrate a novel approach to handling small updates on Flash called In-Place Appends (IPA). It allows the DBMS to revisit the traditional write behavior on Flash. Instead of writing whole database pages upon an update in an out-of-place manner on Flash, we transform those small updates into update deltas and append them to a reserved area on the very same physical Flash page. In doing so we utilize the commonly ignored fact that under certain conditions Flash memories can support in-place updates to Flash pages without a preceding erase operation.
The approach was implemented under Shore-MT and evaluated on real hardware. Under standard update-intensive workloads we observed 67% less page invalidations resulting in 80% lower garbage collection overhead, which yields a 45% increase in transactional throughput, while doubling Flash longevity at the same time. The IPA outperforms In-Page Logging (IPL) by more than 50%.
We showcase a Shore-MT based prototype of the above approach, operating on real Flash hardware – the OpenSSD Flash research platform. During the demonstration we allow the users to interact with the system and gain hands on experience of its performance under different demonstration scenarios. These involve various workloads such as TPC-B, TPC-C or TATP.
In the present paper we demonstrate the novel technique to apply the recently proposed approach of In-Place Appends – overwrites on Flash without a prior erase operation. IPA can be applied selectively: only to DB-objects that have frequent and relatively small updates. To do so we couple IPA to the concept of NoFTL regions, allowing the DBA to place update-intensive DB-objects into special IPA-enabled regions. The decision about region configuration can be (semi-)automated by an advisor analyzing DB-log files in the background.
We showcase a Shore-MT based prototype of the above approach, operating on real Flash hardware. During the demonstration we allow the users to interact with the system and gain hands-on experience under different demonstration scenarios.