Refine
Document Type
- Journal article (9)
- Conference proceeding (5)
- Book chapter (1)
Is part of the Bibliography
- yes (15)
Institute
- Informatik (15)
Publisher
- Elsevier (8)
- Springer (3)
- Frontiers (1)
- Hochschule Reutlingen (1)
- MDPI (1)
- Università Politecnica delle Marche (1)
Today many scientific works are using deep learning algorithms and time series, which can detect physiological events of interest. In sleep medicine, this is particularly relevant in detecting sleep apnea, specifically in detecting obstructive sleep apnea events. Deep learning algorithms with different architectures are used to achieve decent results in accuracy, sensitivity, etc. Although there are models that can reliably determine apnea and hypopnea events, another essential aspect to consider is the explainability of these models, i.e., why a model makes a particular decision. Another critical factor is how these deep learning models determine how severe obstructive sleep apnea is in patients based on the apnea-hypopnea index (AHI). Deep learning models trained by two approaches for AHI determination are exposed in this work. Approaches vary depending on the data format the models are fed: full-time series and window-based time series.
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
Normal breathing during sleep is essential for people’s health and well-being. Therefore, it is crucial to diagnose apnoea events at an early stage and apply appropriate therapy. Detection of sleep apnoea is a central goal of the system design described in this article. To develop a correctly functioning system, it is first necessary to define the requirements outlined in this manuscript clearly. Furthermore, the selection of appropriate technology for the measurement of respiration is of great importance. Therefore, after performing initial literature research, we have analysed in detail three different methods and made a selection of a proper one according to determined requirements. After considering all the advantages and disadvantages of the three approaches, we decided to use the impedance measurement-based one. As a next step, an initial conceptual design of the algorithm for detecting apnoea events was created. As a result, we developed an activity diagram on which the main system components and data flows are visually represented.
The digital twin concept has been widely known for asset monitoring in the industry for a long time. A clear example is the automotive industry. Recently, there has also been significant interest in the application of digital twins in healthcare, especially in genomics in what is known as precision medicine. This work focuses on another medical speciality where digital twins can be applied, sleep medicine. However, there is still great controversy about the fundamentals that constitute digital twins, such as what this concept is based on and how it can be included in healthcare effectively and sustainably. This article reviews digital twins and their role so far in what is known as personalized medicine. In addition, a series of steps will be exposed for a possible implementation of a digital twin for a patient suffering from sleep disorders. For this, artificial intelligence techniques, clinical data management, and possible solutions for explaining the results derived from artificial intelligence models will be addressed.
Home health applications have evolved over the last few decades. Assistive systems such as a data platform in connection with health devices can allow for health-related data to be automatically transmitted to a database. However, there remain significant challenges concerning intermodular communication. Central among them is the challenge of achieving interoperability, the ability of devices to communicate and share data with each other. A major goal of this project was to extend an existing data platform (COMES®) and establish working interoperability by connecting assistive devices with differing approaches. We describe this process for a sleep monitoring and a physical exercise device. Furthermore, we aimed to test this setup and the implementation with a data platform in both a laboratory and an in-home setting with 11 elderly participants. The platform modification was realized, and the relevant changes were made so that the incoming data could be processed by the data platform, as well as visually displayed in real-time. Data was recorded by the respective device and transmitted into the data server with minor disruptions. Our observations affirmed that difficulties and data loss are far more likely to occur with increasing technical complexity, in the event of instable internet connection, or when the device setup requires (elderly) subjects to take specific steps for proper functioning. We emphasize the importance for tests and evaluations of home health technologies in real-life circumstances.
The use of deep learning models with medical data is becoming more widespread. However, although numerous models have shown high accuracy in medical-related tasks, such as medical image recognition (e.g. radiographs), there are still many problems with seeing these models operating in a real healthcare environment. This article presents a series of basic requirements that must be taken into account when developing deep learning models for biomedical time series classification tasks, with the aim of facilitating the subsequent production of the models in healthcare. These requirements range from the correct collection of data, to the existing techniques for a correct explanation of the results obtained by the models. This is due to the fact that one of the main reasons why the use of deep learning models is not more widespread in healthcare settings is their lack of clarity when it comes to explaining decision making.
Introduction
Despite its high accuracy, polysomnography (PSG) has several drawbacks for diagnosing obstructive sleep apnea (OSA). Consequently, multiple portable monitors (PMs) have been proposed.
Objective
This systematic review aims to investigate the current literature to analyze the sets of physiological parameters captured by a PM to select the minimum number of such physiological signals while maintaining accurate results in OSA detection.
Methods
Inclusion and exclusion criteria for the selection of publications were established prior to the search. The evaluation of the publications was made based on one central question and several specific questions.
Results
The abilities to detect hypopneas, sleep time, or awakenings were some of the features studied to investigate the full functionality of the PMs to select the most relevant set of physiological signals. Based on the physiological parameters collected (one to six), the PMs were classified into sets according to the level of evidence. The advantages and the disadvantages of each possible set of signals were explained by answering the research questions proposed in the methods.
Conclusions
The minimum number of physiological signals detected by PMs for the detection of OSA depends mainly on the purpose and context of the sleep study. The set of three physiological signals showed the best results in the detection of OSA.
This work is a study about a comparison of survey tools and it should help developers in selecting a suited tool for application in an AAL environment. The first step was to identify the basic required functionality of the survey tools used for AAL technologies and to compare these tools by their functionality and assignments. The comparative study was derived from the data obtained, previous literature studies and further technical data. A list of requirements was stated and ordered in terms of relevance to the target application domain. With the help of an integrated assessment method, the calculation of a generalized estimate value was performed and the result is explained. Finally, the planned application of this tool in a running project is explained.
Deployment of artificial intelligence models for sleep apnea recognition in the sleep laboratory
(2024)
There are a large number of scientific publications that focus on the development and evaluation of artificial intelligence (AI) models for the detection of various pathologies in the field of sleep medicine. However, most of these publications do not show the process or methodology to be followed for the final deployment of these models in a complete diagnostic system (in terms of software and hardware). This is a major drawback when translating from the development or research environment to the real clinical setting. This work focuses on a methodology for deploying an AI model for sleep apnea detection with the end user in mind: the clinician. For the deployment, the transmission of data between the device, the cloud platform and the machine learning server, as well as the protocols used, were considered. In addition, the storage and visualization of the data has been taken into account so that it can be analyzed accurately by experts.
The classification of sleep and wake states is of paramount importance in the context of sleep disorders. In order to detect and monitor disorders such as obstructive sleep apnea (OSA), it is essential to obtain the total sleep time (TST) so as to assess the severity of the patient’s sleep apnea. With the advent of new technologies for detecting events associated with sleep disorders, it is not always straightforward to calculate the sleep/wakefulness state. Consequently, this work presents the development of a deep learning model (a variant of U-Net) for the detection of sleep/wakefulness states. For this purpose, an engineering approach using Keras Tuner and the use of three signals with minimal processing was employed. The three signals, oxygen saturation (SpO2), heart rate (HR) and abdominal respiratory effort (AbdRes), were selected to ensure both patient comfort during signal collection and the possibility of using portable monitors. The models were trained and tested on data from polysomnography studies, namely the Sleep Heart Health Study (SHHS) and the Multiethnic Study of Atherosclerosis (MESA). The best performing model achieved results with 88% binary precision, 88% recall, 89% precision, 89% f1-score and Cohen’s Kappa of 0.74 for the SHHS test set. The model obtained 82% binary accuracy, 82% recall, 84% precision, 82% f1-score and 0.62 Cohen’s kappa for the MESA data set.