Refine
Document Type
- Journal article (3)
Is part of the Bibliography
- yes (3)
Institute
- Life Sciences (3)
Sunlight has various effects on human health. Several important metabolic processes are only enabled by sunlight. But longtime sun bathing and extended outdoor activities can cause skin irritation, inflammation or even skin cancer due to high radiation dose. We developed in vitro skin models of different complexity to investigate UV-light associated skin damage. Substances and their phototoxic, sun protective or photo-sensitizing potential can be analyzed to prevent white skin cancer.
Soft thermoplastic polysiloxane-urea-elastomers (PSUs) were prepared for the application as a biomaterial to replace the human natural lens after cataract surgery. PSUs were synthesized from amino-terminated polydimethylsiloxanes (PDMS), 4,4′-Methylenebis(cyclohexylisocyanate) (H12MDI) and 1,3–Bis(3-aminopropyl)-1,1,3,3–tetramethyldisiloxane (APTMDS) by a two-step polyaddition route. Such a material has to be highly transparent and must exhibit a low Young’s Modulus and excellent dimensional stability. Polydimethylsiloxanes in the range of 3000–33,000 g·mol−1 were therefore prepared by ring-chain-equilibration of octamethylcyclotetrasiloxane (D4) and APTMDS in order to study the influence of the soft segment molecular weight on the mechanical properties and the transparency of the PSU-elastomers. 2,4,6,8-Tetramethyl-2,4,6,8-tetraphenylcyclotetrasiloxane (D4Me,Ph) was co-polymerized with D4 in order to adjust the refractive index of the polydimethyl-methyl-phenyl-siloxane-copolymers to a value equivalent to a young human natural lens. Very elastic PSUs with Elongation at Break values higher than 700% were prepared. PSU-elastomers, synthesized from PDMS of molecular weights up to 18,000 g·mol−1, showed transmittance values of over 90% within the visible spectrum range. The soft segment refractive index was increased through the incorporation of 14 mol % of methyl-phenyl-siloxane from 1.4011 to 1.4346 (37 °C). Young’s Moduli of PSU-elastomers were around 1 MPa and lower at PDMS molecular weights up to 15,000 g·mol−1. 10-cycle hysteresis measurements were applied to evaluate the mechanical stability of the PSUs at repeated stress. Hysteresis values at 100% strain decreased from 32 to 2% (10th cycle) with increasing PDMS molecular weight. Furthermore, hysteresis at 5% strain was only detected in PSU-elastomers with low PDMS molecular weights. Finally, preliminary results of in vitro cytotoxicity tests on a PSU-elastomer showed no toxic effects on HaCaT-cells.