Refine
Document Type
- Book chapter (3)
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Life Sciences (3)
Publisher
- Elsevier (3)
Unsaturated polyester resins (UPR) and vinyl ester resins (VER) are among the most commercially important thermosetting matrix materials for composites. Although comparatively low cost, their technological performance is suitable for a wide range of applications, such as fiber-reinforced plastics, artificial marble or onyx, polymer concrete, or gel coats. The main areas of UPR consumption include the wind energy, marine, pipe and tank, transportation, and construction industries. This chapter discusses basic UPR and VER chemistry and technology of manufacturing, and consequent applications. Some important properties and performance characteristics are discussed, such as shrinkage behavior, flame retardance, and property modification by nanoparticles. Also briefly introduced and described are the practical aspects of UPR and VER processing, with special emphasis on the most widely used technological approaches, such as hand and spray layup, resin infusion, resin transfer molding, sheet and bulk molding, pultrusion, winding, and centrifugal casting.
Allyls
(2022)
This chapter addresses the importance and usage of the commercially low-volume thermoset plastics group known as allyls. The three significant subelements of this group are poly(diallylphthalates), poly(diallylisophthalates), and poly(allyldiglycol carbonate). Chemistry, processing, and properties are also described. Allyl polymers are synthesized by radical polymerizations of allyl monomers that usually do not produce high-molecular-mass macromolecules. Therefore only a few specific monomers can produce thermosetting materials. Diallyldiglycolcarbonate (CR-39) and diallylphthalates are the most significant examples that have considerably improved our everyday life.
Unsaturated polyester resins (UPR) and vinyl ester resins (VER) are among the most commercially important thermosetting matrix materials for composites. Although comparatively low cost, their technological performance is suitable for a wide range of applications, such as fiber-reinforced plastics, artificial marble or onyx, polymer concrete, or gel coats. The main areas of UPR consumption include the wind energy, marine, pipe and tank, transportation, and construction industries.
This chapter discusses basic UPR and VER chemistry and technology of manufacturing, and consequent applications. Some important properties and performance characteristics are discussed, such as shrinkage behavior, flame retardance, and property modification by nanoparticles. Also briefly introduced and described are the practical aspects of UPR and VER processing, with special emphasis on the most widely used technological approaches, such as hand and spray layup, resin infusion, resin transfer molding, sheet and bulk molding, pultrusion, winding, and centrifugal casting.