### Refine

#### Document Type

- Book chapter (5)
- Journal article (1)

#### Language

- English (6)

#### Has full text

- yes (6)

#### Is part of the Bibliography

- yes (6)

#### Institute

- Technik (6)

#### Publisher

- Springer (5)
- David Publishing (1)

In this chapter we introduce methods to improve mechanical designs by bionic methods. In most cases we assume that a general idea of the part or system is given by a set of data or parameters. Our task is to modify these free parameters so that a given goal or objective is optimized without violation of any of the existing restrictions.

We have seen that bionic optimization can be a powerful tool when applied to problems with non-trivial landscapes of goals and restrictions. This, in turn, led us to a discussion of useful methodologies for applying this optimization to real problems. On the other hand, it must be stated that each optimization is a time consuming process as soon as the problem expands beyond a small number of free parameters related to simple parabolic responses. Bionic optimization is not a quick approach to solving complex questions within short times. In some cases it has the potential to fail entirely, either by sticking to local maxima or by random exploration of the parameter space without finding any promising solutions. The following sections present some remarks on the efficiency and limitations users must be aware of. They aim to increase the knowledge base of using and encountering bionic optimization. But they should not discourage potential users from this promising field of powerful strategies to find good or even the best possible designs.

Application to CAE systems
(2016)

Due to the broad acceptance of CAD-systems based on 3D solids, the geometric data of all common CAE (Computer-Aided Engineering) software, at least in mechanical engineering, are based on these solids. We use solid models, where the space filled by material is defined in a simple and easily useable way. Solid models allow for the development of automated meshers that transform solid volumes into finite elements. Even after some unacceptable initial trials, users are able to generate meshes of non-trivial geometries within minutes to hours, instead of days or weeks. Once meshing had no longer been the cost limiting factor of finite element studies, numerical simulation became a tool for smaller industries as well.
Due to the broad acceptance of CAD-systems based on 3D solids , the geometric data of all common CAE (Computer-Aided Engineering) software, at least in mechanical engineering, are based on these solids. We use solid models , where the space filled by material is defined in a simple and easily useable way. Solid models allow for the development of automated meshers that transform solid volumes into finite elements. Even after some unacceptable initial trials, users are able to generate meshes of non-trivial geometries within minutes to hours, instead of days or weeks. Once meshing had no longer been the cost limiting factor of finite element studies, numerical simulation became a tool for smaller industries as well.
In the early days of automated meshing development, there were discussions over the use of tetragonal (Fig. 4.1) or hexagonal based meshes. But, after a short period of time, it became evident, that there were and will always be many problems using automated meshers to generate hexagonal elements . So today nearly all automated 3D-meshing systems use tetragonal elements .

To illustrate the power and the pitfalls of Bionic Optimization, we will show some examples spanning classes of applications and employing various strategies. These applications cover a broad range of engineering tasks. Nevertheless, there is no guarantee that our experiences and our examples will be sufficient to deal with all questions and issues in a comprehensive way. As general rule it might be stated, that for each class of problems, novices should begin with a learning phase. So, in this introductory phase, we use simple and quick examples, e.g., using small FE-models, linear load cases, short time intervals and simple material models. Here beginners within the Bionic Optimization community can learn which parameter combinations to use. In Sect. 3.3 we discuss strategies for optimization study acceleration. Making use of these parameters as starting points is one way to set the specific ranges, e.g., number of parents and kids, crossing, mutation radii and, numbers of generations. On the other hand, these trial runs will doubtless indicate that Bionic Optimization needs large numbers of individual designs, and considerable time and computing power. We recommend investing enough time preparing each task in order to avoid the frustration should large jobs fail after long calculation times.

Broad acceptance of finite-element-based analysis of structural problems and the increased availability of CAD-systems for structural tasks, which help to generate meshes of non-trivial geometries, have been setting a standard for the evaluation of designs in mechanical engineering in the last few decades. The development of automated or semi-automated optimizers, integrated into the Computer-Aided Engineering (CAE)-packages or working as outer loop machines, requiring the solver to do the analysis of the specific designs, has been accepted by most advanced users of the simulation community as well. The availability and inexpensive processing power of computers is increasing without any limitations foreseen in the coming years. There is little doubt that virtual product development will continue using the tools that have proved to be so successful and so easy to handle.

Bionic optimisation is one of the most popular and efficient applications of bionic engineering. As there are many different approaches and terms being used, we try to come up with a structuring of the strategies and compare the efficiency of the different methods. The methods mostly proposed in literature may be classified into evolutionary, particle swarm and artificial neural net optimisation. Some related classes have to be mentioned as the non-sexual fern optimisation and the response surfaces, which are close to the neuron nets. To come up with a measure of the efficiency that allows to take into account some of the published results the technical optimisation problems were derived from the ones given in literature. They deal with elastic studies of frame structures, as the computing time for each individual is very short. General proposals, which approach to use may not be given. It seems to be a good idea to learn about the applicability of the different methods at different problem classes and then do the optimisation according to these experiences. Furthermore in many cases there is some evidence that switching from one method to another improves the performance. Finally the identification of the exact position of the optimum by gradient methods is often more efficient than long random walks around local maxima.