Refine
Document Type
- Conference proceeding (15)
- Journal article (4)
- Book chapter (2)
Language
- English (21)
Is part of the Bibliography
- yes (21)
Institute
- Informatik (21)
Publisher
- Springer (9)
- Elsevier (3)
- IEEE (3)
- HTWG Konstanz (2)
- Università Politecnica delle Marche (2)
- Hochschule Reutlingen (1)
- MDPI (1)
Sleep study can be used for detection of sleep quality and in general bed behaviors. These results can helpful for regulating sleep and recognizing different sleeping disorders of human. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this work is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides, these methods not only decrease practicality due to the process of having to put them on, but they are also very expensive. The system proposed in this paper classifies respiration and body movement with only one type of sensor and also in a noninvasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed excellent results in the classification of breathing rate and body movements.
Preliminary results of homomorphic deconvolution application to surface EMG signals during walking
(2021)
Homomorphic deconvolution is applied to sEMG signals recorded during walking. Gastrocnemius lateralis and tibialis anterior signals were acquired according to SENIAM recommendation. MUAP parameters like amplitude and scale were estimated, whilst the MUAP shape parameter was fixed. This features a useful time-frequency representation of sEMG signal. Estimation of scale MUAP parameter was verified extracting the mean frequency of filtered EMG signal, extracted from the scale parameter estimated with two different MUAP shape values.
Normal breathing during sleep is essential for people’s health and well-being. Therefore, it is crucial to diagnose apnoea events at an early stage and apply appropriate therapy. Detection of sleep apnoea is a central goal of the system design described in this article. To develop a correctly functioning system, it is first necessary to define the requirements outlined in this manuscript clearly. Furthermore, the selection of appropriate technology for the measurement of respiration is of great importance. Therefore, after performing initial literature research, we have analysed in detail three different methods and made a selection of a proper one according to determined requirements. After considering all the advantages and disadvantages of the three approaches, we decided to use the impedance measurement-based one. As a next step, an initial conceptual design of the algorithm for detecting apnoea events was created. As a result, we developed an activity diagram on which the main system components and data flows are visually represented.
Healthy sleep is required for sufficient restoration of the human body and brain. Therefore, in the case of sleep disorders, appropriate therapy should be applied timely, which requires a prompt diagnosis. Traditionally, a sleep diary is a part of diagnosis and therapy monitoring for some sleep disorders, such as cognitive behaviour therapy for insomnia. To automatise sleep monitoring and make it more comfortable for users, substituting a sleep diary with a smartwatch measurement could be considered. With the aim of providing accurate results, a study with a total of 30 night recordings was conducted. Objective sleep measurement with a Samsung Galaxy Watch 4 was compared with a subjective approach (sleep diary), evaluating the four relevant sleep characteristics: time of getting asleep, wake up time, sleep efficiency (SE), and total sleep time (TST). The performed analysis has demonstrated that the median difference between both measurement approaches was equal to 7 and 3 minutes for a time of getting asleep and wake up time correspondingly, which allows substituting a subjective measurement with a smartwatch. The SE was determined with a median difference between the two measurement methods of 5.22%. This result also implicates a possibility of substitution. Some single recordings have indicated a higher variance between the two approaches. Therefore, the conclusion can be made that a substitution provides reliable results primarily in the case of long-term monitoring. The results of the evaluation of the TST measurement do not allow to recommend substitution of the measurement method.
Sleep is extremely important for physical and mental health. Although polysomnography is an established approach in sleep analysis, it is quite intrusive and expensive. Consequently, developing a non-invasive and non-intrusive home sleep monitoring system with minimal influence on patients, that can reliably and accurately measure cardiorespiratory parameters, is of great interest. The aim of this study is to validate a non-invasive and unobtrusive cardiorespiratory parameter monitoring system based on an accelerometer sensor. This system includes a special holder to install the system under the bed mattress. The additional aim is to determine the optimum relative system position (in relation to the subject) at which the most accurate and precise values of measured parameters could be achieved. The data were collected from 23 subjects (13 males and 10 females). The obtained ballistocardiogram signal was sequentially processed using a sixth-order Butterworth bandpass filter and a moving average filter. As a result, an average error (compared to reference values) of 2.24 beats per minute for heart rate and 1.52 breaths per minute for respiratory rate was achieved, regardless of the subject’s sleep position. For males and females, the errors were 2.28 bpm and 2.19 bpm for heart rate and 1.41 rpm and 1.30 rpm for respiratory rate. We determined that placing the sensor and system at chest level is the preferred configuration for cardiorespiratory measurement. Further studies of the system’s performance in larger groups of subjects are required, despite the promising results of the current tests in healthy subjects.
The goal of the presented project is to develop the concept of home e-health centers for barrier-free and cross-border telemedicine. AAL technologies are already present on the market but there is still a gap to close until they can be used for ordinary patient needs. The general idea needs to be accompanied by new services, which should be brought together in order to provide a full coverage of service for the users. Sleep and stress were chosen as predominant influence in the population. The executed scientific study of available home devices analyzing sleep has provided the necessary to select appropriate devices. The first choice for the project implementation is the device EMFIT QS+. This equipment provides a part of a complete system that a home telemedical hospital can provide at a level of precision and communication with internal and/or external health services.
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.