Refine
Document Type
- Journal article (4)
- Conference proceeding (1)
Has full text
- yes (5)
Is part of the Bibliography
- yes (5)
Institute
- Informatik (2)
- Life Sciences (2)
- ESB Business School (1)
Publisher
Monodisperse polystyrene spheres are functional materials with interesting properties, such as high cohesion strength, strong adsorptivity, and surface reactivity. They have shown a high application value in biomedicine, information engineering, chromatographic fillers, supercapacitor electrode materials, and other fields. To fully understand and tailor particle synthesis, the methods for characterization of their complex 3D morphological features need to be further explored. Here we present a chemical imaging study based on three-dimensional confocal Raman microscopy (3D-CRM), scanning electron microscopy (SEM), focused ion beam (FIB), diffuse reflectance infrared Fourier transform (DRIFT), and nuclear magnetic resonance (NMR) spectroscopy for individual porous swollen polystyrene/poly (glycidyl methacrylate-co-ethylene di-methacrylate) particles. Polystyrene particles were synthesized with different co-existing chemical entities, which could be identified and assigned to distinct regions of the same particle. The porosity was studied by a combination of SEM and FIB. Images of milled particles indicated a comparable porosity on the surface and in the bulk. The combination of standard analytical techniques such as DRIFT and NMR spectroscopies yielded new insights into the inner structure and chemical composition of these particles. This knowledge supports the further development of particle synthesis and the design of new strategies to prepare particles with complex hierarchical architectures.
Monodisperse porous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) particles are widely applied in different fields, as their pore properties can be influenced and functionalization of the epoxy group is versatile. However, the adjustment of parameters which control morphology and pore properties such as pore volume, pore size and specific surface area is scarcely available. In this work, the effects of the process factors monomer:porogen ratio, GMA:EDMA ratio and composition of the porogen mixture on the response variables pore volume, pore size and specific surface area are investigated using a face centered central composite design. Non-linear effects of the process factors and second order interaction effects between them were identified. Despite the complex interplay of the process factors, targeted control of the pore properties was possible. For each response a response surface model was derived with high predictive power (all R2 predicted > 0.85). All models were tested by four external validation experiments and their validity and predictive power was demonstrated.
Digitalization changes the manufacturing dramatically. In regard of employees’ demands, global trends and the technological vision of future factories, automotive manufacturing faces a huge number of diverse challenges. Currently, research focuses on technological aspects of future factories in terms of digitalization. New ways of work and new organizational models for future factories have not been described yet. There are assumptions on how to develop the organization of work in a future factory but up to now, literature shows deficits in scientifically substantiated answers in this research area. Consequently, the objective of this paper is to present an approach on a work organization design for automotive Industry 4.0 manufacturing. Future requirements were analyzed and deducted to criteria that determine future agile organization design. These criteria were then transformed into functional mechanisms, which define the approach for shopfloor organization design
Die Bereitstellung klinischer Informationen im Operationssaal ist ein wichtiger Aspekt zur Unterstützung des chirurgischen Teams. Die roboter-assistierte Ösophagusresektion ist ein besonders komplexer Eingriff, der Potenzial zur workflowbasierten Unterstützung bietet. Wir präsentieren erste Ergebnisse der Entwicklung eines Checklisten-Tools mit der zugrundeliegenden Modellierung des chirurgischen Workflows und Informationsbedarf der Chirurgen. Das Checklisten-Tool zeigt hierfür die durchzuführenden Schritte chronologisch an und stellt zusätzliche Informationen kontextadaptiert bereit. Eine automatische Dokumentation von Start- und Endzeiten einzelner OP-Phasen und Schritte soll zukünftige Prozessanalysen der Operation ermöglichen.
Background
Personalized medicine requires the integration and analysis of vast amounts of patient data to realize individualized care. With Surgomics, we aim to facilitate personalized therapy recommendations in surgery by integration of intraoperative surgical data and their analysis with machine learning methods to leverage the potential of this data in analogy to Radiomics and Genomics.
Methods
We defined Surgomics as the entirety of surgomic features that are process characteristics of a surgical procedure automatically derived from multimodal intraoperative data to quantify processes in the operating room. In a multidisciplinary team we discussed potential data sources like endoscopic videos, vital sign monitoring, medical devices and instruments and respective surgomic features. Subsequently, an online questionnaire was sent to experts from surgery and (computer) science at multiple centers for rating the features’ clinical relevance and technical feasibility.
Results
In total, 52 surgomic features were identified and assigned to eight feature categories. Based on the expert survey (n = 66 participants) the feature category with the highest clinical relevance as rated by surgeons was “surgical skill and quality of performance” for morbidity and mortality (9.0 ± 1.3 on a numerical rating scale from 1 to 10) as well as for long-term (oncological) outcome (8.2 ± 1.8). The feature category with the highest feasibility to be automatically extracted as rated by (computer) scientists was “Instrument” (8.5 ± 1.7). Among the surgomic features ranked as most relevant in their respective category were “intraoperative adverse events”, “action performed with instruments”, “vital sign monitoring”, and “difficulty of surgery”.
Conclusion
Surgomics is a promising concept for the analysis of intraoperative data. Surgomics may be used together with preoperative features from clinical data and Radiomics to predict postoperative morbidity, mortality and long-term outcome, as well as to provide tailored feedback for surgeons.