Refine
Document Type
- Journal article (5)
Language
- English (5)
Is part of the Bibliography
- yes (5)
Institute
- Life Sciences (5)
Thermoplastic polymers like ethylene-octene copolymer (EOC) may be grafted with silanes via reactive extrusion to enable subsequent crosslinking for advanced biomaterials manufacture. However, this reactive extrusion process is difficult to control and it is still challenging to reproducibly arrive at well-defined products. Moreover, high grafting degrees require a considerable excess of grafting reagent. A large proportion of the silane passes through the process without reacting and needs to be removed at great expense by subsequent purification. This results in unnecessarily high consumption of chemicals and a rather resource-inefficient process. It is thus desired to be able to define desired grafting degrees with optimum grafting efficiency by means of suitable process control. In this study, the continuous grafting of vinyltrimethoxysilane (VTMS) on ethylene-octene copolymer (EOC) via reactive extrusion was investigated. Successful grafting was verified and quantified by 1H-NMR spectroscopy. The effects of five process parameters and their synergistic interactions on grafting degree and grafting efficiency were determined using a face-centered experimental design (FCD). Response surface methodology (RSM) was applied to derive a causal process model and define process windows yielding arbitrary grafting degrees between <2 and >5% at a minimum waste of grafting agent. It was found that the reactive extrusion process was strongly influenced by several second-order interaction effects making this process difficult to control. Grafting efficiencies between 75 and 80% can be realized as long as grafting degrees <2% are admitted.
We present the modification of ethylene-propylene rubber (EPM) with vinyltetra-methydisiloxane (VTMDS) via reactive extrusion to create a new silicone-based material with the potential for high-performance applications in the automotive, industrial and biomedical sectors. The radical-initiated modification is achieved with a peroxide catalyst starting the grafting reaction. The preparation process of the VTMDS-grafted EPM was systematically investigated using process analytical technology (in-line Raman spectroscopy) and the statistical design of experiments (DoE). By applying an orthogonal factorial array based on a face-centered central composite experimental design, the identification, quantification and mathematical modeling of the effects of the process factors on the grafting result were undertaken. Based on response surface models, process windows were defined that yield high grafting degrees and good grafting efficiency in terms of grafting agent utilization. To control the grafting process in terms of grafting degree and grafting efficiency, the chemical changes taking place during the modification procedure in the extruder were observed in real-time using a spectroscopic in-line Raman probe which was directly inserted into the extruder. Successful grafting of the EPM was validated in the final product by 1H-NMR and FTIR spectroscopy.
Film formation of self synthesized Polymer EPM–g–VTMDS (ethylene–propylene rubber, EPM, grafted with vinyltetramethyldisiloxane, VTMDS) was studied regarding bonding to adhesion promoter vinyltrimethoxysilane (VTMS) on oxidized 18/10 chromium/nickel–steel (V2A) stainless steel surfaces. Polymer films of different mixed solutions including commercial siloxane and silicone, dimethyl, vinyl group terminated crosslinker (HANSA SFA 42100, CAS# 68083-19-2, 0.35 mmol Vinyl/g) and platinum, 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane complex Karstedt's catalyst (ALPA–KAT 1, CAS# 68478-92-2) were spin coated on V2A stainless steel surfaces with adsorbed VTMS thin layers in order to analyze film formation of EPM–g–VTMDS at early stages. Surface topography and chemical bonding of the high performance polymers on different oxidized V2A surfaces were investigated with X–ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and surface enhanced Raman spectroscopy (SERS). AFM and SEM as well as XPS results indicated that the formation of the polymer film proceeds via growth of polymer islands. Chemical signatures of the essential polymer contributions, linker and polymer backbones, could be identified using XPS core level peak shape analysis and also SERS. The appearance of signals which are related to Si–O–Si can be seen as a clear indication of lateral crosslinking and silica network formation in the films on the V2A surface.
A systematic study using a central composite design of experiments (DoE) was performed on the oxygen plasma surface modifications of two different polymers—Pellethane 2363-55DE, which is a polyurethane, and vinyltrimethoxysilane-grafted ethylene-propylene (EPR-g-VTMS), a cross-linked ethylene-propylene rubber. The impacts of four parameters—gas pressure, generator power, treatment duration, and process temperature—were assessed, with static contact angles and calculated surface free energies (SFEs) as the main responses in the DoE. The plasma effects on the surface roughness and chemistry were determined using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Through the sufficiently accurate DoE model evaluation, oxygen gas pressure was established as the most impactful factor, with the surface energy and polarity rising with falling oxygen pressure. Both polymers, though different in composition, exhibited similar modification trends in surface energy rise in the studied system. The SEM images showed a rougher surface topography after low pressure plasma treatments. XPS and subsequent multivariate data analysis of the spectra established that higher oxidized species were formed with plasma treatments at low oxygen pressures of 0.2 mbar.
Here, we report the continuous peroxide-initiated grafting of vinyltrimethoxysilane (VTMS) onto a standard polyolefin by means of reactive extrusion to produce a functionalized liquid ethylene propylene copolymer (EPM). The effects of the process parameters governing the grafting reaction and their synergistic interactions are identified, quantified and used in a mathematical model of the extrusion process. As process variables the VTMS and peroxide concentrations and the extruder temperature setting were systematically studied for their influence on the grafting and the relative grafting degree using a face-centered central composite design (FCD). The grafting degree was quantified by 1H NMR spectroscopy. Response surface methodology (RSM) was used to calculate the most efficient grafting process in terms of chemical usage and graft yield. With the defined processing window, it was possible to make precise predictions about the grafting degree with at the same time highest possible relative degree of grafting.