Refine
Document Type
- Journal article (6)
Language
- English (6)
Is part of the Bibliography
- yes (6)
Institute
- Life Sciences (6)
Publisher
- MDPI (2)
- BAN (1)
- The Royal Society of Chemistry (1)
- Wiley (1)
- de Gruyter (1)
Morphometry and stiffness of red blood cells - signatures of neurodegenerative diseases and aging
(2022)
Human red blood cells (RBCs) are unique cells with the remarkable ability to deform, which is crucial for their oxygen transport function, and which can be significantly altered under pathophysiological conditions. Here we performed ultrastructural analysis of RBCs as a peripheral cell model, looking for specific signatures of the neurodegenerative pathologies (NDDs) - Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), utilizing atomic force (AFM) and conventional optical (OM) microscopy. We found significant differences in the morphology and stiffness of RBCs isolated from patients with the selected NDDs and those from healthy individuals. Neurodegenerative pathologies’ RBCs are characterized by a reduced abundance of biconcave discoid shape, lower surface roughness and a higher Young’s modulus, compared to healthy cells. Although reduced, the biconcave is still the predominant shape in ALS and AD cells, while the morphology of PD is dominated by crenate cells. The features of RBCs underwent a marked aging-induced transformation, which followed different aging pathways for NDDs and normal healthy states. It was found that the diameter, height and volume of the different cell shape types have different values for NDDs and healthy cells. Common and specific morphological signatures of the NDDs were identified.
The effect of Hofmeister anions on the surface properties of polyelectrolyte multilayers built from hyaluronan and chitosan by layer-by-layer deposition is studied by ellipsometry and atomic force microscopy. The thickness, roughness and morphology of the resulting coatings were found to depend on the type of the anion. Relationship between the surface properties and the biological response of the polyelectrolyte multilayers is established by assessing the degree of protein (albumin) adsorption.
Herein the optimization of the physicochemical properties and surface biocompatibility of polyelectrolyte multilayers of the natural, biocompatible and biodegradable, linear polysaccharides hyaluronan and chitosan by Hofmeister anions was systematically investigated. We demonstrated that there is an interconnection between the bulk and surface properties of HA/Chi multilayers both varying in accordance with the arrangement of the anions in the Hofmeister series. Kosmotropic anions increased the hydration, thickness, micro- and macro-roughness, and hydrophilicity and improved the biocompatibility of the films by reduction (2 orders of magnitude) of the films stiffness and complete anti-thrombogenicity.
Polyelectrolyte multilayer coatings (PEM) are prepared by alternative layer-by-layer deposition of cationic and anionic polyelectrolyte monolayers on charged surfaces. The thickness of the coatings ranges from nm to few μm. Their properties such as roughness, stiffness, surface charge and surface energy can be precisely tuned to fulfil different technical or biological requirements. The coating process is based on self-assembly of polyelectrolytes. Advantages of these coatings are their easy handling, no harsh chemistry and the possibility for coatings on complex geometries. The PEM coatings can be prepared from a variety of suitable polyelectrolytes. Their stability varies from very durable PEM coatings that are only soluble in strong solvents to quickly degradable, which may be applied as drug release system. One example of such a degradable PEM system is the one based on the polyelectrolyte pair Hyaluronan (HA) and Chitosan (CHI). These biopolymers originate from natural sources and show low toxicity towards human cells. However, HA/CHI multilayers show only weak adhesiveness for human umbilical vein endothelial cells (HUVEC). In this article, we summarize our approaches to enhance the HA/CHI multilayer by incorporation of a non-polymer substance –graphene oxide– to improve the cell adhesion and keep such properties as low cytotoxicity and biodegradability. Different approaches for incorporation of graphene oxide were performed and the cellular adhesion was tested by metabolic assay.
Controlling the surface properties and structure of thin nanosized coatings is of primary importance in diverse engineering and medical applications. Here we report on how the nanostructure, growth mechanism, thickness, roughness, and hydrophilicity of nanocomposites composed of weak natural or strong synthetic polyelectrolytes (PE) can be tailored by graphene oxide (GO) doping. GO reverses the build‐up mechanism affecting the internal structure and the hydrophilicity in a way depending on the type of the PE‐matrix. The extent of GO‐adsorption and its impact on the surface morphology was found to be independent on the type of the underlying PE‐matrix. The nanostructure of the hybrid films is not significantly altered when a single surface‐exposed GO‐layer is deposited, while increasing the number of embedded GO‐layers leads to pronounced surface heterogeneity. These results are expected to have valuable impact on the construction strategies of coatings with tunable surface properties.
The imaging and force-distance curve modes of atomic force microscopy (AFM) are explored to compare the morphological and mechanical signatures of platelets from patients diagnosed with classical neurodegenerative diseases (NDDs) and healthy individuals. Our data demonstrate the potential of AFM to distinguish between the three NDDs-Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), and normal healthy platelets. The common features of platelets in the three pathologies are reduced membrane surface roughness, area and height, and enhanced nanomechanics in comparison with healthy cells. These changes might be related to general phenomena associated with reorganization in the platelet membrane morphology and cytoskeleton, a key factor for all platelets’ functions. Importantly, the platelets’ signatures are modified to a different extent in the three pathologies, most significant in ALS, less pronounced in PD and the least in AD platelets, which shows the specificity associated with each pathology. Moreover, different degree of activation, distinct pseudopodia and nanocluster formation characterize ALS, PD and AD platelets. The strongest alterations in the biophysical properties correlate with the highest activation of ALS platelets, which reflect the most significant changes in their nanoarchitecture. The specific platelet signatures that mark each of the studied pathologies can be added as novel biomarkers to the currently used diagnostic tools.