Refine
Document Type
- Journal article (11)
Language
- English (11)
Is part of the Bibliography
- yes (11)
Institute
- Life Sciences (11)
Here, we study resin cure and network formation of solid melamine formaldehyde pre-polymer over a large temperature range viadynamic temperature curing profiles. Real-time infrared spectroscopy is used to analyze the chemical changes during network formation and network hardening. By applying chemometrics (multivariate curve resolution,MCR), the essential chemical functionalities that constitute the network at a given stage of curing are mathematically extracted and tracked over time. The three spectral components identified by MCR were methylol-rich, ether linkages-rich and methylene linkages-rich resin entities. Based on dynamic changes of their characteristic spectral patterns in dependence of temperature, curing is divided into five phases: (I) stationary phase with free methylols as main chemical feature, (II) formation of flexible network cross-linked by ether linkages, (III) formation of rigid, ether-cross-linked network, (IV) further hardening via transformation of methylols and ethers into methylene-cross-linkages, and (V) network consolidation via transformation of ether into methylene bridges. The presented spectroscopic/chemometric approach can be used as methodological basis for the functionality design of MF-based surface films at the stage of laminate pressing, i.e., for tailoring the technological property profile of cured MF films using a causal understanding of the underlying chemistry based on molecular markers and spectroscopic fingerprints.
The data presented in this article characterize the thermomechanical and microhardness properties of a novel melamine-formaldehyde resin (MF) intended for the use as a self-healing surface coating. The investigated MF resin is able to undergo reversible crosslinking via Diels Alder reactive groups. The microhardness data were obtained from nanoindentation measurements performed on solid resin film samples at different stages of the self-healing cycle. Thermomechanical analysis was performed under dynamic load conditions. The data provide supplemental material to the manuscript published by Urdl et al. 2020 (https://doi.org/10.1016/j.eurpolymj.2020.109601) on the self-healing performance of this resin, where a more thorough discussion on the preparation, the properties of this coating material and its application in impregnated paper-based decorative laminates can be found.
Melamine–formaldehyde (MF) resins are widely used as adhesives and finishing materials in the wood industry. During resin cure, either methylene ether or methylene bridges are formed, leading to the formation of a three‐dimensional resin network. Not only the curing degree, but also the chemical species present in the cured resin determine the quality of the final product. Analytical methods allowing a detailed investigation of network formation are of great benefit to manufacturers. In the present work, resin cure of an MF precondensate is studied at different temperatures (100–200 °C) without considering the initial pH as a factor. Isoconversional kinetic analysis based on exothermal curing enthalpies enables calculation of the crosslinking degree at a given time/temperature regime. A semiquantitative determination of the chemical groups present is performed based on solid‐state nuclear magnetic resonance data. Fourier transform infrared spectroscopy has shown to be a fast and reliable analytical tool with high sensitivity toward functional groups and with great potential for at‐line process control.
The data present in this article affords insides in the characterization of a newly described bi-functional furan-melamine monomer, which is used for the production of monodisperse, furan-functionalized melamine formaldehyde particles. In the related research article Urdl et al., 2019 data interpretations can be found. The furan functionalization of particles is necessary to perform reversible Diels-Alder reactions with maleimide (BMI) crosslinker to form thermoreversible network systems. To understand the reaction conditions of Diels Alder (DA) reaction with a Fu-Mel monomer and a maleimide crosslinker, model DA reaction were performed and evaluated using dynamic FT-IR measurements. During retro Diels-Alder (rDA) reactions of the monomer system, it was found out that some side reaction occurred at elevated temperatures. The data of evaluating the side reaction is described in one part of this manuscript. Additional high resolution SEM images of Fu Mel particles are shown and thermoreversible particle networks with BMI2 are shown. The data of different Fu-Mel particle networks with maleimide crosslinker are presented. Therefore, the used maleimide crosslinker with different spacer lengths were synthesized and the resulting networks were analyzed by ATR-FT-IR, SEM and DSC.
Homogeneous and monodispersed furan functionalised melamine-formaldehyde particles were produced. As a precursor, 2-chloro-1,3,5-triazine-2,4-diamine (Mel) was selectively substituted with 2-aminomethyl furan (Fu) units in a convenient one step reaction. The pure reaction product Fu-Mel, which was used without further purification, was reacted with formaldehyde by conventional sol-gel condensation in aqueous medium to yield chemically homogenous, spherically shaped and monodispersed particles. The particles were analysed using ATR-FT-IR, Raman, 1H and 13C NMR spectroscopy, TGA, SEM and DSC measurements. The reactivity of the furan groups located at the particle surface was studied by performing a thermoreversible Diels-Alder cycloaddition reaction with bis-maleimide coupling agents. The formed networks showed thermoreversible behaviour, which was characterised by dynamic IR and DSC measurements.
During curing of thermosetting resins the technologically relevant properties of binders and coatings develop. However, curing is difficult to monitor due to the multitude of chemical and physical processes taking place. Precise prediction of specific technological properties based on molecular properties is very difficult. In this study, the potential of principal component analysis (PCA) and principal component regression (PCR) in the analysis of Fourier transform infrared (FTIR) spectra is demonstrated using the example of melamine-formaldehyde (MF) resin curing in solid state. FTIR/PCA-based reaction trajectories are used to visualize the influence of temperature on isothermal cure. An FTIR/PCR model for predicting the hydrolysis resistance of cured MF resin from their spectral fingerprints is presented which illustrates the advantages of FTIR/PCR compared to the combination differential scanning calorimetry/isoconversional kinetic analysis. The presented methodology is transferable to the curing reactions of any thermosetting resin and can be applied to model other technologically relevant final properties as well.
Melamine-formaldehyde resins are widely used for decorative paper impregnation. Resin properties relevant for impregnation are mainly determined already at the stage of resin synthesis by the applied reaction conditions. Thus, understanding the relationship between reaction conditions and technological properties is important. Response surface methodology based on orthogonal parameter level variations is the most suitable tool to identify and quantify factor effects and deduce causal correlation patterns. Here, two major process factors of MF resin synthesis were systematically varied using such a statistical experimental design. To arrive at resins having a broad range of technological properties, initial pH and M:F ratio were varied in a wide range (pH: 7.9–12.1; M:F ratio: 1:1.5–1:4.5). The impregnation behavior of the resins was modeled using viscosity, penetration rate and residual curing capacity as technological responses. Based on the response surface models, nonlinear and synergistic action of process factors was quantified and a suitable process window for preparing resins with favorable impregnation performance was defined. It was found that low M:F ratios (~1:2–1:2.5) and comparatively high starting pHs (~pH 11) yield impregnation resins with rapid impregnation behavior and good residual curing capacity.
The self-healing effect of melamine-based surfaces, triggered by temperature, was investigated. The temperature triggered reversible healing chemistry, on which the self-healing effect is based, was the Diels-Alder (DA) reaction between furan and malemeide groups. Melamine-furan containing building blocks were connected by multi-functional maleimide crosslinker via a Diels-Alder (DA) reaction to giva a DA adduct. The DA adduct was then reacted with formaldehyde to form a network by conventional condensation reaction of melamine amino groups with formaldehyde. The obtained resin was characterised and used for the impregnation of paper. Impregnated papers and neat resin werde used to perform scratch-healing tests and mechanical analysis of the novel coating system.
Melamine-formaldehyde (MF) resins are widely used as surface finishes for engineered wood-based panels in decorative laminates. Since no additional glue is applied in lamination, the overall residual curing capacity of MF resins is of great technological importance. Residual curing capacity is measured by differential scanning calorimetry (DSC) as the exothermic curing enthalpy integral of the liquid resin. After resin synthesis is completed, the resulting pre-polymer has a defined chemical structure with a corresponding residual curing capacity. Predicting the residual curing capacity of a resin batch already at an early stage during synthesis would enable corrective measures to be taken by making adjustments while synthesis is still in progress. Thereby, discarding faulty batches could be avoided. Here, by using a batch modelling approach, it is demonstrated how quantitative predictions of MF residual curing capacity can be derived from inline Fourier Transform infrared (FTIR) spectra recorded during resin synthesis using partial least squares regression. Not only is there a strong correlation (R2 = 0.89) between the infrared spectra measured at the end of MF resin synthesis and the residual curing capacity. The inline reaction spectra obtained already at the point of complete dissolution of melamine upon methylolation during the initial stage of resin synthesis are also well suited for predicting final curing performance of the resin. Based on these IR spectra, a valid regression model (R2 = 0.85) can be established using information obtained at a very early stage of MF resin synthesis.
The isothermal curing of melamine resin is investigated by in-line infrared spectroscopy at different temperatures. The infrared spectra are decomposed into time courses of characteristic spectral patterns using Multivariate Curve Resolution (MCR). It was found that depending on the applied curing temperature, melamine films with different spectral fingerprints and correspondingly different chemical network structures are formed. The network structures of fully cured resin films are specific for the applied curing temperatures used and cannot simply be compensated by changes in the curing time. For industrial curing processes, this means that cure temperature is the main system determining factor at constant M:F ratio. However, different MF resin networks can be specifically obtained from one and the same melamine resin by suitable selection of the curing time and temperatures profiles to design resin functionality. The spectral fingerprints after short curing time as well as after long curing time reflect the fundamental differences in the thermoset networks that can be obtained with industrial short-cycle and multi-daylight presses.