Refine
Document Type
- Journal article (15)
Language
- English (15)
Is part of the Bibliography
- yes (15)
Institute
- Life Sciences (15)
Publisher
- Elsevier (6)
- Wiley (3)
- MDPI (2)
- American Chemical Society (1)
- IM Publications Open LLP (1)
- Sage Publishing (1)
- The Royal Society of Chemistry (1)
An ultraviolet visible (UV–Vis) spectroscopy method was developed that can quantitatively characterize a technical copper surface to determine oxide layers and organic impurities. The oxide layers were produced by a heating step at 175 ℃ for four different times (range = 1–10 min). Partial least squares (PLS) regression was used to establish a relation between the UV–Vis spectra and film thickness measurements using Auger electron spectroscopy depth profiles. The validation accuracy of the regression is in the range of approximately 2.3 nm. The prediction model allowed obtaining an estimation of the oxide layer thickness with an absolute error of 2.9 nm. Alternatively, already known methods cannot be used because of the high roughness of the technical copper surfaces. An integrating sphere is used to measure the diffuse reflectance of these surfaces, providing an average over all angles of illumination and observation.
The detection and characterisation of oxide layers on metallic copper samples plays an important role for power electronic modules in the automotive industry. However, since precise identification of oxide layers by visual inspection is difficult and time consuming due to inhomogeneous colour distribution, a reliable and efficient method for estimating their thickness is needed. In this study, hyperspectral imaging in the visible wavelength range (425–725 nm) is proposed as an in-line inspection method for analysing oxide layers in real-time during processing of copper components such as printed circuit boards in the automotive industry. For implementation in the production line a partial least square regression (PLSR) model was developed with a calibration set of n = 12 with about 13,000 spectra per sample to determine the oxide layer thickness on top of the technical copper surfaces. The model shows a good prediction performance in the range of 0–30 nm compared to Auger electron spectroscopy depth profiles as a reference method. The root mean square error (RMSE) is 1.75 nm for calibration and 2.70 nm for full cross validation. Applied to an external dataset of four new samples with about 13,000 spectra per sample the model provides an RMSE of 1.84 nm for prediction and demonstrates the robustness of the model during real-time processing. The results of this study prove the ability and usefulness of the proposed method to estimate the thickness of oxide layers on technical copper. Hence, the application of hyperspectral imaging for the industrial process control of electronic devices is very promising.
We report an investigation into the distribution of copper oxidation states in oxide films formed on the surfaces of technical copper. The oxide films were grown by thermal annealing at ambient conditions and studied using Auger depth profiling and UV–Vis spectroscopy. Both Auger and UV–Vis data were evaluated applying multivariate curve resolution (MCR). Both experimental techniques revealed that the growth of Cu2O dominates the initial ca. 40 nm of oxide films grown at 175 °C, while further oxide growth is dominated by CuO formation. The largely coincident results from both experimental approaches demonstrates the huge benefit of the application of UV–Vis spectroscopy in combination with MCR analysis, which provides access to information on chemical state distributions without the need for destructive sample analysis. Both approaches are discussed in detail.
One-pot synthesis of micron partly hollow anisotropic dumbbell shaped silica core-shell particles
(2016)
A facile method is described to prepare micron partly hollow dumbbell silica particles in a single step. The obtained particles consist of a large dense part and a small hollow lobe. The spherical dense core as well as the hollow lobe are covered by mesoporous channels. In the case of a smaller lobe these channels are responsible for the permeability of the shell which was demonstrated by confocal imaging and spectroscopy.
Due to its availability and minimal invasive harvesting human adipose tissue-derived extracellular matrix (dECM) is often used as a biomaterial in various tissue engineering and healthcare applications. Next to dECM, cell-derived ECM (cdECM) can be generated by and isolated from in vitro cultured cells. So far both types of ECM were investigated extensively toward their application as (bio)material in tissue engineering and healthcare. However, a systematic characterization and comparison of soft tissue dECM and cdECM is still missing. In this study, we characterized dECM from human adipose tissue, as well as cdECM from human adipose-derived stem cells, toward their molecular composition, structural characteristics, and biological purity. The dECM was found to exhibit higher levels of collagens and lower levels of sulfated glycosaminoglycans compared with cdECMs. Structural characteristics revealed an immature state of the fibrous part of cdECM samples. By the identified differences, we aim to support researchers in the selection of a suitable ECM-based biomaterial for their specific application and the interpretation of obtained results.
In this study a biobased polyurethane (PU) thermoset is investigated due to its turbidity. In contrary to the expectations, the turbidity increases with a higher amount of a low molecular weight crosslinker. Morphological aspects are investigated with SEM imaging and measurement of the effective scattering coefficient μ’s. FTIR spectroscopy is applied to study the influence of the chemical structure. This is combined with multivariate data analysis to identify the relevant peaks. SEM images show spherical precipitations with increasing turbidity and a simultaneous increase in the μ’s values. FTIR analysis shows a significant amount of unreacted isocyanate‐(NCO)groups and a low level of hydrogen bonding. No formation of typical hard and soft segments is detectable. Therefore, it can be concluded that the increase in polarity differences with increasing crosslinker amount disabled the mixture of the polyol and isocyanate components, resulting in the precipitation of the isocyanate. At the same time, the low molecular weight crosslinker (~200 g mol−1) can react with the NCO quickly, reducing the mobility of the polymer chain, with remaining, non‐reacted isocyanate. A proof for the correlation of the differences in the FTIR and the μ’s values was found by a regression analysis with an R2 of 0.94.
Polyurethane thermosets have a wide range of applications. In this study, alternative raw materials were used to enhance sustainability. In two newly developed biobased polyurethanes (PUs), the cross-linker content was varied, which caused phase separation and therefore affected the turbidity. To investigate this phenomenon, UV–Vis–NIR spectroscopy was utilized. Spectra were recorded from 200 to 2500 nm in transmittance mode, and multivariate data analysis was applied to the three UV, Vis, and NIR sections separately. For the two different PU classes, each with five different cross-linker contents, classification by principal component analysis combined with linear or quadratic discriminant analysis was possible with an accuracy between 93% and nearly 100%. The best separation was achieved in the NIR range. Partial least-squares regression models were determined to predict the cross-linker content. As mentioned, the model for the NIR range is the most suitable, with the highest R2 (validation) of 0.99 for PU1 and 0.98 for PU2. The corresponding root-mean-square error of prediction values of the external validation was the lowest, with 0.82% (PU1) and 1.25% (PU2). Therefore, UV–Vis–NIR absorbance spectroscopy, especially NIR, is a suitable tool for monitoring the appropriate material composition of turbid PU thermosets in line.
Employing diffuse reflection ultraviolet visible (UV–Vis) spectroscopy we developed an approach that is capable to quantitatively determine flux residues on a technical copper surface. The technical copper surface was soldered with a no-clean flux system of organic acids. By a post-solder cleaning step with different cleaning parameters, various levels of residues were produced. The surface was quantitatively and qualitatively characterized using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR) and diffuse reflection UV–Vis spectroscopy. With the use of a multivariate analysis (MVA) we examined the UV–Vis data to create a correlation to the carbon content on the surface. The UV–Vis data could be discriminated for all groups by their level of organic residues. Combined with XPS the data were evaluated by a partial least squares (PLS) regression to establish a model. Based on this predictive model, the carbon content was calculated with an absolute error of 2.7 at.%. Due to the high correlation of predictive model, the easy-to-use measurement and the evaluation by multivariate analysis the developed method seems suitable for an online monitoring system. With this system, flux residues can be detected in a manufacturing cleaning process of technical surfaces after soldering.
For medical polymers, their surface condition is an important factor for their biocompatibility in potential applications. The occurrence of antioxidant separation, in form of additive blooming onto the material surface causes changes in the chemical composition, topography, stability and could influence the bioactivity of the medical devices. In this study, the separation of Irganox antioxidant occurring after the spin coating of polyurethane into thin films under 1 µm thickness was examined. The phenomenon was observed with different polymers from the Pellethane series. The extent of the blooming and its aftereffects were evaluated using scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and Raman microscopy. The compatibility of Irganox with the polymers was compared on the basis of the Hansen solubility parameter (HSP) concept. Additionally, Raman imaging in combination with basis analysis was established as a viable and fast method for polymer-additive distinction. The surface coverage of the bloomed areas increased with film thickness, and with it, its impact onto the surface chemistry and topography of the thin films. Simple protein coating tests indicated that the bloomed areas slightly impact the ability of fibronectin to form protein netting structures on the surface.
Film formation of self synthesized Polymer EPM–g–VTMDS (ethylene–propylene rubber, EPM, grafted with vinyltetramethyldisiloxane, VTMDS) was studied regarding bonding to adhesion promoter vinyltrimethoxysilane (VTMS) on oxidized 18/10 chromium/nickel–steel (V2A) stainless steel surfaces. Polymer films of different mixed solutions including commercial siloxane and silicone, dimethyl, vinyl group terminated crosslinker (HANSA SFA 42100, CAS# 68083-19-2, 0.35 mmol Vinyl/g) and platinum, 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane complex Karstedt's catalyst (ALPA–KAT 1, CAS# 68478-92-2) were spin coated on V2A stainless steel surfaces with adsorbed VTMS thin layers in order to analyze film formation of EPM–g–VTMDS at early stages. Surface topography and chemical bonding of the high performance polymers on different oxidized V2A surfaces were investigated with X–ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and surface enhanced Raman spectroscopy (SERS). AFM and SEM as well as XPS results indicated that the formation of the polymer film proceeds via growth of polymer islands. Chemical signatures of the essential polymer contributions, linker and polymer backbones, could be identified using XPS core level peak shape analysis and also SERS. The appearance of signals which are related to Si–O–Si can be seen as a clear indication of lateral crosslinking and silica network formation in the films on the V2A surface.