Refine
Document Type
- Journal article (15)
Language
- English (15)
Is part of the Bibliography
- yes (15)
Institute
- Life Sciences (15)
Publisher
- Elsevier (6)
- Wiley (3)
- MDPI (2)
- American Chemical Society (1)
- IM Publications Open LLP (1)
- Sage (1)
- The Royal Society of Chemistry (1)
Block-copolyesters of polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) were synthesized via reactive extrusion. The influence of processing parameters on the material properties on a molecular scale like degree of trans-esterification, block length, and degree of randomness were investigated. The varied process factors were extrusion temperature and rotational speed. The effects of process parameter variation were investigated by 1H-NMR-spectroscopy. The experimental results show a clear dependence of the molecular properties on the processing conditions. By using statistical experimental design (DoE), it was possible to prepare defined copolyesters from PET and PEN without addition of further chemicals. With a degree of randomness between 0.05 and 0.5, the presence of an actual copolyester was confirmed when appropriate extrusion conditions were applied. The reactive extrusion process was confirmed to be suitable to produce defined block-copolyesters in a predictable and reproducible way. It was possible to produce designed sequence lengths, which could be adjusted within a range of 11–136 repeating units in the case of PET and, in the case of PEN, of 2.5–26. The produced materials can be used as barrier materials or barrier coatings to protect substrates against molecular oxygen and water vapour, e.g., in organic photovoltaic applications or food packaging. The described method is a one-pot alternative method to the previously described chemical recycling pathway.
For medical polymers, their surface condition is an important factor for their biocompatibility in potential applications. The occurrence of antioxidant separation, in form of additive blooming onto the material surface causes changes in the chemical composition, topography, stability and could influence the bioactivity of the medical devices. In this study, the separation of Irganox antioxidant occurring after the spin coating of polyurethane into thin films under 1 µm thickness was examined. The phenomenon was observed with different polymers from the Pellethane series. The extent of the blooming and its aftereffects were evaluated using scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and Raman microscopy. The compatibility of Irganox with the polymers was compared on the basis of the Hansen solubility parameter (HSP) concept. Additionally, Raman imaging in combination with basis analysis was established as a viable and fast method for polymer-additive distinction. The surface coverage of the bloomed areas increased with film thickness, and with it, its impact onto the surface chemistry and topography of the thin films. Simple protein coating tests indicated that the bloomed areas slightly impact the ability of fibronectin to form protein netting structures on the surface.
Due to its availability and minimal invasive harvesting human adipose tissue-derived extracellular matrix (dECM) is often used as a biomaterial in various tissue engineering and healthcare applications. Next to dECM, cell-derived ECM (cdECM) can be generated by and isolated from in vitro cultured cells. So far both types of ECM were investigated extensively toward their application as (bio)material in tissue engineering and healthcare. However, a systematic characterization and comparison of soft tissue dECM and cdECM is still missing. In this study, we characterized dECM from human adipose tissue, as well as cdECM from human adipose-derived stem cells, toward their molecular composition, structural characteristics, and biological purity. The dECM was found to exhibit higher levels of collagens and lower levels of sulfated glycosaminoglycans compared with cdECMs. Structural characteristics revealed an immature state of the fibrous part of cdECM samples. By the identified differences, we aim to support researchers in the selection of a suitable ECM-based biomaterial for their specific application and the interpretation of obtained results.
We present the modification of ethylene-propylene rubber (EPM) with vinyltetra-methydisiloxane (VTMDS) via reactive extrusion to create a new silicone-based material with the potential for high-performance applications in the automotive, industrial and biomedical sectors. The radical-initiated modification is achieved with a peroxide catalyst starting the grafting reaction. The preparation process of the VTMDS-grafted EPM was systematically investigated using process analytical technology (in-line Raman spectroscopy) and the statistical design of experiments (DoE). By applying an orthogonal factorial array based on a face-centered central composite experimental design, the identification, quantification and mathematical modeling of the effects of the process factors on the grafting result were undertaken. Based on response surface models, process windows were defined that yield high grafting degrees and good grafting efficiency in terms of grafting agent utilization. To control the grafting process in terms of grafting degree and grafting efficiency, the chemical changes taking place during the modification procedure in the extruder were observed in real-time using a spectroscopic in-line Raman probe which was directly inserted into the extruder. Successful grafting of the EPM was validated in the final product by 1H-NMR and FTIR spectroscopy.
Thermoplastic polymers like ethylene-octene copolymer (EOC) may be grafted with silanes via reactive extrusion to enable subsequent crosslinking for advanced biomaterials manufacture. However, this reactive extrusion process is difficult to control and it is still challenging to reproducibly arrive at well-defined products. Moreover, high grafting degrees require a considerable excess of grafting reagent. A large proportion of the silane passes through the process without reacting and needs to be removed at great expense by subsequent purification. This results in unnecessarily high consumption of chemicals and a rather resource-inefficient process. It is thus desired to be able to define desired grafting degrees with optimum grafting efficiency by means of suitable process control. In this study, the continuous grafting of vinyltrimethoxysilane (VTMS) on ethylene-octene copolymer (EOC) via reactive extrusion was investigated. Successful grafting was verified and quantified by 1H-NMR spectroscopy. The effects of five process parameters and their synergistic interactions on grafting degree and grafting efficiency were determined using a face-centered experimental design (FCD). Response surface methodology (RSM) was applied to derive a causal process model and define process windows yielding arbitrary grafting degrees between <2 and >5% at a minimum waste of grafting agent. It was found that the reactive extrusion process was strongly influenced by several second-order interaction effects making this process difficult to control. Grafting efficiencies between 75 and 80% can be realized as long as grafting degrees <2% are admitted.
One-pot synthesis of micron partly hollow anisotropic dumbbell shaped silica core-shell particles
(2016)
A facile method is described to prepare micron partly hollow dumbbell silica particles in a single step. The obtained particles consist of a large dense part and a small hollow lobe. The spherical dense core as well as the hollow lobe are covered by mesoporous channels. In the case of a smaller lobe these channels are responsible for the permeability of the shell which was demonstrated by confocal imaging and spectroscopy.
Film formation of self synthesized Polymer EPM–g–VTMDS (ethylene–propylene rubber, EPM, grafted with vinyltetramethyldisiloxane, VTMDS) was studied regarding bonding to adhesion promoter vinyltrimethoxysilane (VTMS) on oxidized 18/10 chromium/nickel–steel (V2A) stainless steel surfaces. Polymer films of different mixed solutions including commercial siloxane and silicone, dimethyl, vinyl group terminated crosslinker (HANSA SFA 42100, CAS# 68083-19-2, 0.35 mmol Vinyl/g) and platinum, 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane complex Karstedt's catalyst (ALPA–KAT 1, CAS# 68478-92-2) were spin coated on V2A stainless steel surfaces with adsorbed VTMS thin layers in order to analyze film formation of EPM–g–VTMDS at early stages. Surface topography and chemical bonding of the high performance polymers on different oxidized V2A surfaces were investigated with X–ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and surface enhanced Raman spectroscopy (SERS). AFM and SEM as well as XPS results indicated that the formation of the polymer film proceeds via growth of polymer islands. Chemical signatures of the essential polymer contributions, linker and polymer backbones, could be identified using XPS core level peak shape analysis and also SERS. The appearance of signals which are related to Si–O–Si can be seen as a clear indication of lateral crosslinking and silica network formation in the films on the V2A surface.
The detection and characterisation of oxide layers on metallic copper samples plays an important role for power electronic modules in the automotive industry. However, since precise identification of oxide layers by visual inspection is difficult and time consuming due to inhomogeneous colour distribution, a reliable and efficient method for estimating their thickness is needed. In this study, hyperspectral imaging in the visible wavelength range (425–725 nm) is proposed as an in-line inspection method for analysing oxide layers in real-time during processing of copper components such as printed circuit boards in the automotive industry. For implementation in the production line a partial least square regression (PLSR) model was developed with a calibration set of n = 12 with about 13,000 spectra per sample to determine the oxide layer thickness on top of the technical copper surfaces. The model shows a good prediction performance in the range of 0–30 nm compared to Auger electron spectroscopy depth profiles as a reference method. The root mean square error (RMSE) is 1.75 nm for calibration and 2.70 nm for full cross validation. Applied to an external dataset of four new samples with about 13,000 spectra per sample the model provides an RMSE of 1.84 nm for prediction and demonstrates the robustness of the model during real-time processing. The results of this study prove the ability and usefulness of the proposed method to estimate the thickness of oxide layers on technical copper. Hence, the application of hyperspectral imaging for the industrial process control of electronic devices is very promising.
We report an investigation into the distribution of copper oxidation states in oxide films formed on the surfaces of technical copper. The oxide films were grown by thermal annealing at ambient conditions and studied using Auger depth profiling and UV–Vis spectroscopy. Both Auger and UV–Vis data were evaluated applying multivariate curve resolution (MCR). Both experimental techniques revealed that the growth of Cu2O dominates the initial ca. 40 nm of oxide films grown at 175 °C, while further oxide growth is dominated by CuO formation. The largely coincident results from both experimental approaches demonstrates the huge benefit of the application of UV–Vis spectroscopy in combination with MCR analysis, which provides access to information on chemical state distributions without the need for destructive sample analysis. Both approaches are discussed in detail.
An ultraviolet visible (UV–Vis) spectroscopy method was developed that can quantitatively characterize a technical copper surface to determine oxide layers and organic impurities. The oxide layers were produced by a heating step at 175 ℃ for four different times (range = 1–10 min). Partial least squares (PLS) regression was used to establish a relation between the UV–Vis spectra and film thickness measurements using Auger electron spectroscopy depth profiles. The validation accuracy of the regression is in the range of approximately 2.3 nm. The prediction model allowed obtaining an estimation of the oxide layer thickness with an absolute error of 2.9 nm. Alternatively, already known methods cannot be used because of the high roughness of the technical copper surfaces. An integrating sphere is used to measure the diffuse reflectance of these surfaces, providing an average over all angles of illumination and observation.