Refine
Document Type
- Journal article (5)
- Conference proceeding (2)
Has full text
- yes (7)
Is part of the Bibliography
- yes (7)
Institute
Publisher
- Elsevier (3)
- De Gruyter (1)
- SAIIE (1)
- Springer (1)
- VDI Fachmedien (1)
The fifth mobile communications generation (5G) offers the deployment scenario of licensed 5G standalone non-public networks (NPNs). Standalone NPNs are locally restricted 5G networks based on 5G New Radio technology which are fully isolated from public networks. NPNs operate on their dedicated core network and offer organizations high data security and customizability for intrinsic network control. Especially in networked and cloud manufacturing, 5G is seen as a promising enabler for delay-sensitive applications such as autonomous mobile robots and robot motion control based on the tactile internet that requires wireless communication with deterministic traffic and strict cycling times. However, currently available industrial standalone NPNs do not meet the performance parameters defined in the 5G specification and standardization process. Current research lacks in performance measurements of download, upload, and time delays of 5G standalone-capable end-devices in NPNs with currently available software and hardware in industrial settings. Therefore, this paper presents initial measurements of the data rate and the round-trip delay in standalone NPNs with various end-devices to generate a first performance benchmark for 5G-based applications. In addition, five end-devices are compared to gain insights into the performance of currently available standalone-capable 5G chipsets. To validate the data rate, three locally hosted measurement methods, namely iPerf3, LibreSpeed and OpenSpeedTest, are used. Locally hosted Ping and LibreSpeed have been executed to validate the time delay. The 5G standalone NPN of Reutlingen University uses licensed frequencies between 3.7-3.8 GHz and serves as the testbed for this study.
The fifth mobile communications generation (5G) can lead to a substantial change in companies enabling the full capability of wireless industrial communication. 5G with its key features of providing Enhanced Mobile Broadband, Ultra-Reliable and Low-Latency Communication, and Massive Machine Type Communication will support the implementation of Industry 4.0 applications. In particular, the possibility to set-up Non-Public Networks provides the opportunity of 5G communication in factories and ensures sole access to the 5G infrastructure offering new opportunities for companies to implement innovative mobile applications. Currently there exist various concepts, ideas, and projects for 5G applications in an industrial environment. However, the global rollout of 5G systems is a continuous process based on various stages defined by the global initiative 3rd Generation Partnership Project that develops and specifies the 5G telecommunication standard. Accordingly, some services are currently still far from their final performance capability or not yet implemented. Additionally, research lacks in clarifying the general suitability of 5G regarding frequently mentioned 5G use cases. This paper aims to identify relevant 5G use cases for intralogistics and evaluates their technical requirements regarding their practical feasibility throughout the upcoming 5G specifications.
5G-Campusnetze sind vielversprechende Umgebungen für industrielle Anwendungen in Produktion und Intralogistik. Diese erreichen jedoch bisher nicht die versprochenen Leistungen, um intralogistischen Anwendungen das volle Potenzial von 5G bieten zu können. Die im Rahmen des Projekts 5G4KMU erhobenen und in diesem Beitrag vorgestellten Leistungsmessungen dienen zur Evaluierung der derzeitigen Praxistauglichkeit von 5G-Campusnetzen.
Mobile Roboter sind entscheidend für die automatisierte Intralogistik der Industrie 4.0. Eine sichere drahtlose Anbindung an Flottenmanager oder Steuerungssysteme ist essenziell. Private 5G-Campusnetzwerke mit lizenzierten Frequenzen gelten als vielversprechende Lösung. Aus diesem Grund beleuchtet der Beitrag die Grundlagen der 5G-Technologie für mobile Roboter sowie die aktuelle Leistungsfähigkeit von privaten 5G-Campusnetzwerken anhand erhobener Messungen.
The fifth generation of mobile communication (5G) is a wireless technology developed to provide reliable, fast data transmission for industrial applications, such as autonomous mobile robots and connect cyber-physical systems using Internet of Things (IoT) sensors. In this context, private 5G networks enable the full performance of industrial applications built on dedicated 5G infrastructures. However, emerging wireless communication technologies such as 5G are a complex and challenging topic for training in learning factories, often lacking physical or visual interaction. Therefore, this paper aims to develop a real-time performance monitoring system of private 5G networks and different industrial 5G devices to visualise the performance and impact factors influencing 5G for students and future connectivity experts. Additionally, this paper presents the first long-term measurements of private 5G networks and shows the performance gap between the actual and targeted performance of private 5G networks.
Mobile assistance systems (MAS) promise to overcome personnel shortages in operating theatres worldwide. A literature review inspired by the PRISMA 2020 method determines the state of the art of MAS, and identifies a lack of application areas for MAS in the operating theatre. Interviews with subject-matter experts aim to investigate application areas for MAS. The results show that most operational tasks refer to material management and patient management. MAS, with their potential to reduce the time needed for material and patient management, and the physical and mental strain of patient management, have great potential in the operating theatre.
In the context of Industry 4.0, intralogistics faces an increasingly complex and dynamic environment driven by a high level of product customisation and complex manufacturing processes. One approach to deal with these changing conditions is the decentralised and intelligent connectivity of intralogistics systems. However, wireless connectivity presents a major challenge in the industry due to strict requirements such as safety and real-time data transmission. In this context, the fifth generation of mobile communications (5G) is a promising technology to meet the requirements of safety-critical applications. Particularly, since 5G offers the possibility of establishing private 5G networks, also referred to as standalone non-public networks. Through their isolation from public networks, private 5G networks provide exclusive coverage for private organisations offering them high intrinsic network control and data security. However, 5G is still under development and is being gradually introduced in a continuous release process. This process lacks transparency regarding the performance of 5G in individual releases, complicating the successful adoption of 5G as an industrial communication. Additionally, the evaluation of 5G against the specified target performance is insufficient due to the impact of the environment and external interfering factors on 5G in the industrial environment. Therefore, this paper aims to develop a technical decision-support framework that takes a holistic approach to evaluate the practicality of 5G for intralogistics use cases by considering two fundamental stages. The first of these analyses technical parameters and characteristics of the use case to evaluate the theoretical feasibility of 5G. The second stage investigates the application's environment, which substantially impacts the practicality of 5G, for instance, the influence of surrounding materials. Finally, a case study validates the proposed framework by means of an autonomous mobile robot. As a result, the validation proves the proposed framework's applicability and shows the practicality of the autonomous mobile robot, when integrating it into a private 5G network testbed.