Refine
Document Type
- Conference proceeding (3)
- Journal article (2)
Is part of the Bibliography
- yes (5)
Institute
- Technik (5)
Um einen Funksensor zum Messen der Windgeschwindigkeit per Energy Harvesting mit Energie zu versorgen, bietet es sich an, das Messsignal selbst zur Energiegewinnung zu nutzen. Mit optimierter Funkübertragung und Energiemanagement lässt sich ein autarker Windstärke-Funksensor realisieren, der ab 2 m/s Windgeschwindigkeiten messen und die Messwerte per Funk übertragen kann.
In this article an energy harvesting system for measuring the wind speed starting from 2 m/s (about 2 Bft) is presented, which uses the same source for measuring and supplying power (energy autarkic). The use of the same source for measurement and power supply increases the number of potential applications since needed power is present with the measuring signal. For the case of measuring the wind velocity, one might consider applications in tunnels, tubes, pipelines, air conditioning or for controlling clogging of filters. Bluetooth Low Energy (BLE) is chosen as radio technology, since it provides the possibility to realize a unidirectional communication; requiring only a single telegram (advertising telegram) for sending the measured value. A more complex establishment of communication required by WLAN or 6LoWPAN could therefore be avoided to significantly reduce the overall energy consumption. Since the advertisement telegram does not make any provision for security or against hacking in general, a security concept is presented which includes encryption and resilience against replay attacks in a unidirectional communication system.
To facilitate the presented concepts beyond wind sensors, the system is divided into three major modules namely the generator-sensor module, the radio module and the energy management module. Whereas the first two might be changed in different applications the energy management module could be reused in many different applications. It supplies and stores the needed energy and switches power on and off in a deterministic way to ensure the radio module can operate correctly.
As fuel prices climb and the global automotive sector migrates to more sustainable vehicle technologies, the future of South Africa’s minibus taxis is in flux. The authors’ previous research has found that battery electric technology struggles to meet all the mobility requirements of minibus taxis. They investigate the technical feasibility of powering taxis with hydrogen fuel cells instead. The following results are projected using a custom-built simulator, and tracking data of taxis based in Stellenbosch, South Africa. Each taxi requires around 12 kg of hydrogen gas per day to travel an average distance of 360 km. 465 kWh of electricity, or 860 m2 of solar panels, would electrolyse the required green hydrogen. An economic analysis was conducted on the capital and operational expenses of a system of ten hydrogen taxis and an electrolysis plant. Such a pilot project requires a minimum investment of € 3.8 million (R 75 million), for a 20 year period. Although such a small scale roll-out is technically feasible and would meet taxis’ performance requirements, the investment cost is too high, making it financially unfeasible. They conclude that a large scale solution would need to be investigated to improve financial feasibility; however, South Africa’s limited electrical generation capacity poses a threat to its technical feasibility. The simulator is uploaded at: https://gitlab.com/eputs/ev-fleet-sim-fcv-model.
Simulation eines dezentralen Regelungssystems zur netzdienlichen Erzeugung von grünem Wasserstoff
(2023)
Wasserstoff wird einen bedeutenden Beitrag zum Wandel von Industrie und Gesellschaft in eine klimaneutrale Zukunft leisten. Der Aufbau und die ökologisch und ökonomisch sinnvolle Nutzung einer Wasserstoffinfrastruktur sind hierbei die zentralen Herausforderungen. Ein notwendiger Baustein ist die effiziente Bereitstellung von grünem Strom und dem daraus produzierten grünen Wasserstoff. Der vorliegende Beitrag stellt ein dezentrales Regel- und Kommunikationssystem vor, mit dem Angebot und Nachfrage von grünem Strom und Wasserstoff in einem System aus dezentralen Akteuren in Einklang gebracht werden. In einer hierzu entwickelten Simulationsumgebung wird die Funktion und der Nutzen dieses dezentralen Ansatzes verdeutlicht.
Das Thema Energiewende ist in aller Munde. Sie soll eine sichere, umweltverträgliche und wirtschaftlich erfolgreiche Zukunft ermöglichen. Ein Ansatz dafür ist die dezentrale, also verbrauchernahe Energieversorgung. Der Trend geht weg vom konventionellen Kraftwerk und hin zur Kraft-Wärme-Koppelung und erneuerbaren Energien. Für einen absehbaren Zeitraum geht es auch darum, zentrale und dezentrale Elemente sinnvoll miteinander zu verknüpfen. Mit der Frage, wie Energiesysteme angepasst und kombiniert werden müssen, um den Energiehaushalt – den nationalen wie den von Unternehmen und Privatpersonen – optimieren zu können, beschäftigt sich das Reutlinger Energiezentrum für Dezentrale Energiesysteme und Energieeffizienz in Lehre und Forschung. Es ist die Kombination aus Technik und Betriebswirtschaft, aus einzelwirtschaftlicher Optimierung und aus Gesamtsicht, die das Reutlinger Energiezentrum ausmacht. Im Folgenden werden die Schwerpunkte des Forschungsteams dargestellt.