Refine
Document Type
- Conference proceeding (6)
- Journal article (2)
Is part of the Bibliography
- yes (8)
Institute
- Technik (8)
In this article an energy harvesting system for measuring the wind speed starting from 2 m/s (about 2 Bft) is presented, which uses the same source for measuring and supplying power (energy autarkic). The use of the same source for measurement and power supply increases the number of potential applications since needed power is present with the measuring signal. For the case of measuring the wind velocity, one might consider applications in tunnels, tubes, pipelines, air conditioning or for controlling clogging of filters. Bluetooth Low Energy (BLE) is chosen as radio technology, since it provides the possibility to realize a unidirectional communication; requiring only a single telegram (advertising telegram) for sending the measured value. A more complex establishment of communication required by WLAN or 6LoWPAN could therefore be avoided to significantly reduce the overall energy consumption. Since the advertisement telegram does not make any provision for security or against hacking in general, a security concept is presented which includes encryption and resilience against replay attacks in a unidirectional communication system.
To facilitate the presented concepts beyond wind sensors, the system is divided into three major modules namely the generator-sensor module, the radio module and the energy management module. Whereas the first two might be changed in different applications the energy management module could be reused in many different applications. It supplies and stores the needed energy and switches power on and off in a deterministic way to ensure the radio module can operate correctly.
Um einen Funksensor zum Messen der Windgeschwindigkeit per Energy Harvesting mit Energie zu versorgen, bietet es sich an, das Messsignal selbst zur Energiegewinnung zu nutzen. Mit optimierter Funkübertragung und Energiemanagement lässt sich ein autarker Windstärke-Funksensor realisieren, der ab 2 m/s Windgeschwindigkeiten messen und die Messwerte per Funk übertragen kann.
Germany aims to achieve carbon-neutral electricity generation by 2045. As a part of this plan, solar and wind electricity generation is expected to increase significantly. Since renewable energy sources are highly volatile and intermittent, this leads to periods of energy surplus and deficit, resulting in need of energy storage solutions for efficient utilisation of renewable energy sources and grid stabilisation. The current paper proposes the utilisation of hydrogen as an energy storage system to balance the supply and demand dynamics in Germany for 2045 with an electrolyser sizing of 155 GW and a fuel cell sizing of 123 GW as a sustainable and profitable hydrogen system sizing for Germany in 2045. The paper illustrates that, fuel cell and electrolyser sizing can fully compensate for the future power deficit exacerbated by heating electricity and battery electric vehicles charging demand of Germany.
The production of green hydrogen is of paramount importance for the global transition to a carbon free energy supply. Electrolyzers that run on renewable energy are used to produce green hydrogen. The installed renewable power capacity is expected to vastly increase over the coming years. This greatly increased capacity in combination with the volatile nature of such power sources will require a short term energy dispatch. In this scenario an electrolyzer must be able to operate in dynamic conditions. This paper presents an optimal control solution to this future real world application considering the unique operational and economical characteristics of an electrolyzer as well as the dynamic mode of operation due to future short term energy dispatch. The necessity of such a control strategy is demonstrated by simulation results.
The efficient production and utilization of green hydrogen is vital to succeed in the global strive for a sustainable future. To provide the necessary amount of green hydrogen a high number of electrolyzers will be connected as decentralized power consumers to the grid. A large amount of decentralized renewable power sources will provide the energy. In such a system a control method is necessary to dispatch the available power most efficiently. In particular, the shutdown of renewable energy sources due to temporary overproduction must be avoided. This paper presents a decentralized tertiary control algorithm that provides a new decentralized control approach, thus creating a flexible, robust and easily scalable system. The operation of each grid participant within this grid connected microgrid is optimized for maximum financial profit, while minimizing the exchange of power with the mains grid and reducing the shutdown of renewable power sources.
Simulation eines dezentralen Regelungssystems zur netzdienlichen Erzeugung von grünem Wasserstoff
(2023)
Wasserstoff wird einen bedeutenden Beitrag zum Wandel von Industrie und Gesellschaft in eine klimaneutrale Zukunft leisten. Der Aufbau und die ökologisch und ökonomisch sinnvolle Nutzung einer Wasserstoffinfrastruktur sind hierbei die zentralen Herausforderungen. Ein notwendiger Baustein ist die effiziente Bereitstellung von grünem Strom und dem daraus produzierten grünen Wasserstoff. Der vorliegende Beitrag stellt ein dezentrales Regel- und Kommunikationssystem vor, mit dem Angebot und Nachfrage von grünem Strom und Wasserstoff in einem System aus dezentralen Akteuren in Einklang gebracht werden. In einer hierzu entwickelten Simulationsumgebung wird die Funktion und der Nutzen dieses dezentralen Ansatzes verdeutlicht.
As fuel prices climb and the global automotive sector migrates to more sustainable vehicle technologies, the future of South Africa’s minibus taxis is in flux. The authors’ previous research has found that battery electric technology struggles to meet all the mobility requirements of minibus taxis. They investigate the technical feasibility of powering taxis with hydrogen fuel cells instead. The following results are projected using a custom-built simulator, and tracking data of taxis based in Stellenbosch, South Africa. Each taxi requires around 12 kg of hydrogen gas per day to travel an average distance of 360 km. 465 kWh of electricity, or 860 m2 of solar panels, would electrolyse the required green hydrogen. An economic analysis was conducted on the capital and operational expenses of a system of ten hydrogen taxis and an electrolysis plant. Such a pilot project requires a minimum investment of € 3.8 million (R 75 million), for a 20 year period. Although such a small scale roll-out is technically feasible and would meet taxis’ performance requirements, the investment cost is too high, making it financially unfeasible. They conclude that a large scale solution would need to be investigated to improve financial feasibility; however, South Africa’s limited electrical generation capacity poses a threat to its technical feasibility. The simulator is uploaded at: https://gitlab.com/eputs/ev-fleet-sim-fcv-model.
Das Thema Energiewende ist in aller Munde. Sie soll eine sichere, umweltverträgliche und wirtschaftlich erfolgreiche Zukunft ermöglichen. Ein Ansatz dafür ist die dezentrale, also verbrauchernahe Energieversorgung. Der Trend geht weg vom konventionellen Kraftwerk und hin zur Kraft-Wärme-Koppelung und erneuerbaren Energien. Für einen absehbaren Zeitraum geht es auch darum, zentrale und dezentrale Elemente sinnvoll miteinander zu verknüpfen. Mit der Frage, wie Energiesysteme angepasst und kombiniert werden müssen, um den Energiehaushalt – den nationalen wie den von Unternehmen und Privatpersonen – optimieren zu können, beschäftigt sich das Reutlinger Energiezentrum für Dezentrale Energiesysteme und Energieeffizienz in Lehre und Forschung. Es ist die Kombination aus Technik und Betriebswirtschaft, aus einzelwirtschaftlicher Optimierung und aus Gesamtsicht, die das Reutlinger Energiezentrum ausmacht. Im Folgenden werden die Schwerpunkte des Forschungsteams dargestellt.