Refine
Year of publication
- 2021 (3)
Document Type
- Journal article (3)
Language
- English (3)
Is part of the Bibliography
- yes (3)
Institute
- Life Sciences (3)
To correctly assess the cleanliness of technical surfaces in a production process, corresponding online monitoring systems must provide sufficient data. A promising method for fast, large-area, and non-contact monitoring is hyperspectral imaging (HSI), which was used in this paper for the detection and quantification of organic surface contaminations. Depending on the cleaning parameter constellation, different levels of organic residues remained on the surface. Afterwards, the cleanliness was determined by the carbon content in the atom percent on the sample surfaces, characterized by XPS and AES. The HSI data and the XPS measurements were correlated, using machine learning methods, to generate a predictive model for the carbon content of the surface. The regression algorithms elastic net, random forest regression, and support vector machine regression were used. Overall, the developed method was able to quantify organic contaminations on technical surfaces. The best regression model found was a random forest model, which achieved an R2 of 0.7 and an RMSE of 7.65 At.-% C. Due to the easy-to-use measurement and the fast evaluation by machine learning, the method seems suitable for an online monitoring system. However, the results also show that further experiments are necessary to improve the quality of the prediction models.
Hyperspectral imaging and reflectance spectroscopy in the range from 200–380 nm were used to rapidly detect and characterize copper oxidation states and their layer thicknesses on direct bonded copper in a non-destructive way. Single-point UV reflectance spectroscopy, as a well-established method, was utilized to compare the quality of the hyperspectral imaging results. For the laterally resolved measurements of the copper surfaces an UV hyperspectral imaging setup based on a pushbroom imager was used. Six different types of direct bonded copper were studied. Each type had a different oxide layer thickness and was analyzed by depth profiling using X-ray photoelectron spectroscopy. In total, 28 samples were measured to develop multivariate models to characterize and predict the oxide layer thicknesses. The principal component analysis models (PCA) enabled a general differentiation between the sample types on the first two PCs with 100.0% and 96% explained variance for UV spectroscopy and hyperspectral imaging, respectively. Partial least squares regression (PLS-R) models showed reliable performance with R2c = 0.94 and 0.94 and RMSEC = 1.64 nm and 1.76 nm, respectively. The developed in-line prototype system combined with multivariate data modeling shows high potential for further development of this technique towards real large-scale processes.
Employing diffuse reflection ultraviolet visible (UV–Vis) spectroscopy we developed an approach that is capable to quantitatively determine flux residues on a technical copper surface. The technical copper surface was soldered with a no-clean flux system of organic acids. By a post-solder cleaning step with different cleaning parameters, various levels of residues were produced. The surface was quantitatively and qualitatively characterized using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR) and diffuse reflection UV–Vis spectroscopy. With the use of a multivariate analysis (MVA) we examined the UV–Vis data to create a correlation to the carbon content on the surface. The UV–Vis data could be discriminated for all groups by their level of organic residues. Combined with XPS the data were evaluated by a partial least squares (PLS) regression to establish a model. Based on this predictive model, the carbon content was calculated with an absolute error of 2.7 at.%. Due to the high correlation of predictive model, the easy-to-use measurement and the evaluation by multivariate analysis the developed method seems suitable for an online monitoring system. With this system, flux residues can be detected in a manufacturing cleaning process of technical surfaces after soldering.