Refine
Document Type
- Conference proceeding (18)
- Journal article (3)
- Book chapter (3)
- Doctoral Thesis (1)
Language
- English (25)
Has full text
- yes (25)
Is part of the Bibliography
- yes (25)
Institute
- Informatik (25)
Publisher
We introduce IPA-IDX – an approach to handle index modifications modern storage technologies (NVM, Flash) as physical in-place appends, using simplified physiological log records. IPA-IDX provides similar performance and longevity advantages for indexes as basic IPA [5] does for tables. The selective application of IPA-IDX and basic IPA to certain regions and objects, lowers the GC overhead by over 60%, while keeping the total space overhead to 2%. The combined effect of IPA and IPA-IDX increases performance by 28%.
Characteristics of modern computing and storage technologies fundamentally differ from traditional hardware. There is a need to optimally leverage their performance, endurance and energy consumption characteristics. Therefore, existing architectures and algorithms in modern high performance database management systems have to be redesigned and advanced. Multi Version Concurrency Control (MVCC) approaches in data-base management systems maintain multiple physically independent tuple versions. Snapshot isolation approaches enable high parallelism and concurrency in workloads with almost serializable consistency level. Modern hardware technologies benefit from multi-version approaches. Indexing multi-version data on modern hardware is still an open research area. In this paper, we provide a survey of popular multi-version indexing approaches and an extended scope of high performance single-version approaches. An optimal multi-version index structure brings look-up efficiency of tuple versions, which are visible to transactions, and effort on index maintenance in balance for different workloads on modern hardware technologies.
Database management systems (DBMS) are critical performance components in large scale applications under modern update intensive workloads. Additional access paths accelerate look-up performance in DBMS for frequently queried attributes, but the required maintenance slows down update performance. The ubiquitous B+ tree is a commonly used key-indexed access path that is able to support many required functionalities with logarithmic access time to requested records. Modern processing and storage technologies and their characteristics require reconsideration of matured indexing approaches for today's workloads. Partitioned B-trees (PBT) leverage characteristics of modern hardware technologies and complex memory hierarchies as well as high update rates and changes in workloads by maintaining partitions within one single B+-Tree. This paper includes an experimental evaluation of PBTs optimized write pattern and performance improvements. With PBT transactional throughput under TPC-C increases 30%; PBT results in beneficial sequential write patterns even in presence of updates and maintenance operations.
Blockchains yield to new workloads in database management systems and K/V-stores. Distributed Ledger Technology (DLT) is a technique for managing transactions in ’trustless’ distributed systems. Yet, clients of nodes in blockchain networks are backed by ’trustworthy’ K/V-Stores, like LevelDB or RocksDB in Ethereum, which are based on Log-Structured Merge Trees (LSM Trees). However, LSM-Trees do not fully match the properties of blockchains and enterprise workloads.
In this paper, we claim that Partitioned B-Trees (PBT) fit the properties of this DLT: uniformly distributed hash keys, immutability, consensus, invalid blocks, unspent and off-chain transactions, reorganization and data state / version ordering in a distributed log-structure. PBT can locate records of newly inserted key-value pairs, as well as data of unspent transactions, in separate partitions in main memory. Once several blocks acquire consensus, PBTs evict a whole partition, which becomes immutable, to secondary storage. This behavior minimizes write amplification and enables a beneficial sequential write pattern on modern hardware. Furthermore, DLT implicate some type of log-based versioning. PBTs can serve as MV-store for data storage of logical blocks and indexing in multi-version concurrency control (MVCC) transaction processing.
Active storage
(2018)
In brief, Active Storage refers to an architectural hardware and software paradigm, based on collocation storage and compute units. Ideally, it will allow to execute application-defined data ... within the physical data storage. Thus Active Storage seeks to minimize expensive data movement, improving performance, scalability, and resource efficiency. The effective use of Active Storage mandates new architectures, algorithms, interfaces, and development toolchains.
A transaction is a demarcated sequence of application operations, for which the following properties are guaranteed by the underlying transaction processing system (TPS): atomicity, consistency, isolation, and durability (ACID). Transactions are therefore a general abstraction, provided by TPS that simplifies application development by relieving transactional applications from the burden of concurrency and failure handling. Apart from the ACID properties, a TPS must guarantee high and robust performance (high transactional throughput and low response times), high reliability (no data loss, ability to recover last consistent state, fault tolerance), and high availability (infrequent outages, short recovery times).
The architectures and workhorse algorithms of a high-performance TPS are built around the properties of the underlying hardware. The introduction of nonvolatile memories (NVM) as novel storage technology opens an entire new problem space, with the need to revise aspects such as the virtual memory hierarchy, storage management and data placement, access paths, and indexing. NVM are also referred to as storage-class memory (SCM).
nKV in action: accelerating KVstores on native computational storage with NearData processing
(2020)
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, has yet to see widespread use.
In this paper we demonstrate various NDP alternatives in nKV, which is a key/value store utilizing native computational storage and near-data processing. We showcase the execution of classical operations (GET, SCAN) and complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4x-2.7x better performance due to NDP. nKV runs on real hardware - the COSMOS+ platform.
Massive data transfers in modern key/value stores resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, have yet to see widespread use.
In this paper we introduce nKV, which is a key/value store utilizing native computational storage and near-data processing. On the one hand, nKV can directly control the data and computation placement on the underlying storage hardware. On the other hand, nKV propagates the data formats and layouts to the storage device where, software and hardware parsers and accessors are implemented. Both allow NDP operations to execute in host-intervention-free manner, directly on physical addresses and thus better utilize the underlying hardware. Our performance evaluation is based on executing traditional KV operations (GET, SCAN) and on complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4×-2.7× better performance on real hardware – the COSMOS+ platform.
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) and a shift to code-to-data designs may represent a viable solution as packaging combinations of storage and compute elements on the same device has become viable.
The shift towards NDP system architectures calls for revision of established principles. Abstractions such as data formats and layouts typically spread multiple layers in traditional DBMS, the way they are processed is encapsulated within these layers of abstraction. The NDP-style processing requires an explicit definition of cross-layer data formats and accessors to ensure in-situ executions optimally utilizing the properties of the underlying NDP storage and compute elements. In this paper, we make the case for such data format definitions and investigate the performance benefits under NoFTL-KV and the COSMOS hardware platform.
Modern mixed (HTAP)workloads execute fast update-transactions and long running analytical queries on the same dataset and system. In multi-version (MVCC) systems, such workloads result in many short-lived versions and long version-chains as well as in increased and frequent maintenance overhead.
Consequently, the index pressure increases significantly. Firstly, the frequent modifications cause frequent creation of new versions, yielding a surge in index maintenance overhead. Secondly and more importantly, index-scans incur extra I/O overhead to determine, which of the resulting tuple versions are visible to the executing transaction (visibility-check) as current designs only store version/timestamp information in the base table – not in the index. Such index-only visibility-check is critical for HTAP workloads on large datasets.
In this paper we propose the Multi Version Partitioned B-Tree (MV-PBT) as a version-aware index structure, supporting index-only visibility checks and flash-friendly I/O patterns. The experimental evaluation indicates a 2x improvement for analytical queries and 15% higher transactional throughput under HTAP workloads. MV-PBT offers 40% higher tx. throughput compared to WiredTiger’s LSM-Tree implementation under YCSB.