Refine
Document Type
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Technik (3)
Publisher
- IEEE (2)
- VDE Verlag GmbH (1)
Verification of an active time constant tuning technique for continuous-time delta-sigma modulators
(2022)
In this work we present a technique to compensate the effects of R-C / g m -C time-constant (TC) errors due to process variation in continuous-time delta-sigma modulators. Local TC error compensation factors are shifted around in the modulator loop to positions where they can be implemented efficiently with finely tunable circuit structures, such as current-steering digital-to-analog converters (DAC). We apply our technique to a third-order, single-bit, low-pass continuous-time delta-sigma modulator in cascaded integrator feedback structure, implemented in a 0.35-μm CMOS process. A tuning scheme for the reference currents of the feedback DACs is derived as a function of the individual TC errors and verified by circuit simulations. We confirm the tuning technique experimentally on the fabricated circuit over a TC parameter variation range of ±20%. Stable modulator operation is achieved for all parameter sets. The measured performances satisfy the expectations from our theoretical calculations and circuit-level simulations.
We propose a novel technique to compensate the effects of R-C / gm-C time-constant (TC) errors due to process variation in continuous-time delta-sigma modulators. Local TC error compensation factors are shifted around in the modulator loop to positions where they can be implemented efficiently with tunable circuit structures, such as current-steering digital-to-analog converters (DAC). This approach constitutes an alternative or supplement to existing compensation techniques, including capacitor or gm tuning. We apply the proposed technique to a third-order, single-bit, low-pass continuous-time delta-sigma modulator in cascaded integrator feedback structure. A feedback path tuning scheme is derived analytically and confirmed numerically using behavioral simulations. The modulator circuit was implemented in a 0.35-μm CMOS process using an active feedback coefficient tuning structure based on current-steering DACs. Post-layout simulations show that with this tuning structure, constant performance and stable operation can be obtained over a wide range of TC variation.
Nowadays robust, energy-efficient multisensor microsystems often come with heavily restricted power budgets and the characteristic of remaining in certain states for a longer period of time. During this time frame there is no continuous clock signal required which gives the opportunity to suspend the clock until a new transition is requested. In this paper, we present a new topology for on-demand locally clocked finite state machines. The architecture combines a local adaptive clocking approach with synchronous and asynchronous components forming a quasi synchronous system. Using adaptive and local clocking comes with the advantages of reducing the power consumption while saving design effort when no global clock tree is needed. Combining synchronous and asynchronous components is beneficial compared to previous fully asynchronous approaches concerning the design restrictions. The developed topology is verified by the implementation and simulation of a temperature-ADC sensor system realized in a 180 nm process.