Refine
Year of publication
- 2019 (4)
Document Type
Language
- English (4)
Has full text
- yes (4)
Is part of the Bibliography
- yes (4)
Institute
- Technik (4)
Publisher
- IEEE (2)
- VDE Verlag (2)
We present a compact battery charger topology for weight and cost sensitive applications with an average output current of 9A targeted for 36V batteries commonly found in electric bicycles. Instead of using a conventional boost converter with large DC-link capacitors, we accomplish PFC-functionality by shaping the charging current into a sin²-shape. In addition, a novel control scheme without input-current sensing is introduced. A-priori knowledge is used to implement a feed-forward control in combination with a closed-loop output current control to maintain the target current. The use of a full-bridge/half bridge LLC converter enables operation in a wide input-voltage range.
A fully featured prototype has been built with a peak output power of 1050W. An average output power of 400W was measured, resulting in a power density of 1.8 kW/dm³. At 9A charging current, a power factor of 0.96 was measured and the efficiency exceeds 93% on average with passive rectification.
The impact of pulse charging has been evaluated on a 400Wh battery which was charged with the proposed converter as well as CC-CV-charging for reference. Both charging schemes show similar battery surface temperatures.
The Dual Active Bridge (DAB) is a very promising topology for future power converters. However, careless operation can lead to a DC component in the transformer current. The problem is further exacerbated when the phase shift changes during operation. This work presents a study of DC bias effects on the DAB with special regard to transient effects introduced by sudden shifts in the output load. We present a simple yet effective approach to avoid DC bias entirely.
Usually battery chargers have two stages and DC charging current is considered to by necessary for a proper charging. To decrease the charger volume, a single stage LLC battery charger is investigated in this paper. PFC stage is eliminated, therefore no bulky capacitor is necessary any more, and battery is charged with a sinusoidal-like charging current. However, previous studies show that such a pulsating charging current has only minimal impact on battery life and efficiency. Design considerations of the resonant tank and optimal transformer design are presented. A 360W single stage LLC converter prototype for e-bike charger achieves a power factor of 0.98, efficiency of 0.93 and power density of 1,8kW/dm³.
Power loss measurement of power electronic components and overall systems is sometimes difficult by use of electrical quantities and in few applications even not possible. The calorimetric power loss measurement is an established method to identify the overall system losses with a suitable accuracy. This paper presents a novel method with an open chamber calorimeter under accurate air mass flow, air pressure, humidity measurement and temperature control. The benefits are the approximately halved measurement time compared to established systems and the possibility to control the chamber temperature. So it is possible to measure the power losses at different ambient temperatures.