Refine
Document Type
- Journal article (4)
- Conference proceeding (1)
Language
- English (5)
Is part of the Bibliography
- yes (5)
Institute
- Informatik (5)
Publisher
- Elsevier (3)
- Curran Associates Inc. (1)
- Lausanne (1)
The global demand for resources such as energy, land, or water is constantly increasing. It is therefore not sur- prising that research on the Food-Energy-Water (FEW) nexus has become a scientific as well as a general focus in recent years. A significant increase in publications since 2015 can be observed, and it can be expected that this trend will continue. A multilevel (macro, meso, and micro) perspective is essential, as the FEW nexus has cross- sectoral interdependencies. Several review studies on the FEW nexus can be found in the literature, in general, it can be concluded that the FEW nexus is a multi-disciplinary and complex topic. The studies examined identify essential fields of action for research, policy, and society. However, questions such as what are the main research fields at each level? Is it possible to divide the research into specific clusters? and do the clusters correlate with the levels, and what are the methods of modeling used in the clusters and levels? are still not fully discussed in the literature. An extensive literature review was conducted to get insight into the existing research areas. Especially in such fields as the FEW nexus, the amount of literature can get huge, and a human could get lost analyzing the literature manually. For that, we created word clouds and performed a cluster- and network-analysis to support the selection of most relevant papers for a detailed reading. In 2021, the most publications were published, with 173 publications, which corresponds to a share of 26.6 %. There has been a significant increase since 2015, and it can be expected that this trend will continue in the coming years. Most of the first authors come from the USA (25.4 %), followed by China with 22.4 %. From the word cloud and the top 20 words, which appear in the title and abstract, it can be deduced that the topic water is the most represented. However, the terms system, resource, model, study, change, development, and management also appear to be very important, which indi- cates the importance of a holistic approach to the topic. In total 9 clusters could be identified at the different levels. It can be seen that three clusters form well. For the others, a rather diffuse picture can be observed. In order to find out which topics are hidden behind the individual clusters, 6 publications from each cluster were subjected to a more detailed examination. With these steps, a number of 54 publications were identified for de- tailed consideration. The modeling approaches that are currently being applied in research can be classified into domain-specific tools (e. g. global water models, crop models or global climate models) and into more general tools to perform for example a life cycle analysis, spatial analysis using geographic information system, or system dynamics for a general understanding of the links between the domains. With the domain-specific tools, detailed research questions can be addressed to answer questions for a specific domain. However, these tools have the disadvantage that especially the links between the sectors food, energy, and water are not fully considered. Many implementations that are made today are at lowest level (micro) relate to bounded spatial areas and are derived from macro and meso level goals.
The paper explains a workflow to simulate the food energy water (FEW) nexus for an urban district combining various data sources like 3D city models, particularly the City Geography Markup Language (CityGML) data model from the Open Geospatial Consortium, Open StreetMap and Census data. A long term vision is to extend the CityGML data model by developing a FEW Application Domain Extension (FEW ADE) to support future FEW simulation workflows such as the one explained in this paper. Together with the mentioned simulation workflow, this paper also identifies some necessary FEW related parameters for the future development of a FEW ADE. Furthermore, relevant key performance indicators are investigated, and the relevant datasets necessary to calculate these indicators are studied. Finally, different calculations are performed for the downtown borough Ville-Marie in the city of Montréal (Canada) for the domains of food waste (FW) and wastewater (WW) generation. For this study, a workflow is developed to calculate the energy generation from anaerobic digestion of FW and WW. In the first step, the data collection and preparation was done. Here relevant data for georeferencing, data for model set-up, and data for creating the required usage libraries, like food waste and wastewater generation per person, were collected. The next step was the data integration and calculation of the relevant parameters, and lastly, the results were visualized for analysis purposes. As a use case to support such calculations, the CityGML level of detail two model of Montréal is enriched with information such as building functions and building usages from OpenStreetMap. The calculation of the total residents based on the CityGML model as the main input for Ville-Marie results in a population of 72,606. The statistical value for 2016 was 89,170, which corresponds to a deviation of 15.3%. The energy recovery potential of FW is about 24,024 GJ/year, and that of wastewater is about 1,629 GJ/year, adding up to 25,653 GJ/year. Relating values to the calculated number of inhabitants in Ville-Marie results in 330.9 kWh/year for FW and 22.4 kWh/year for wastewater, respectively.
Urban platforms are essential for smart and sustainable city planning and operation. Today they are mostly designed to handle and connect large urban data sets from very different domains. Modelling and optimisation functionalities are usually not part of the cities software infrastructure. However, they are considered crucial for transformation scenario development and optimised smart city operation. The work discusses software architecture concepts for such urban platforms and presents case study results on the building sector modelling, including urban data analysis and visualisation. Results from a case study in New York are presented to demonstrate the implementation status.
Zero or plus energy office buildings must have very high building standards and require highly efficient energy supply systems due to space limitations for renewable installations. Conventional solar cooling systems use photovoltaic electricity or thermal energy to run either a compression cooling machine or an absorption-cooling machine in order to produce cooling energy during daytime, while they use electricity from the grid for the nightly cooling energy demand. With a hybrid photovoltaic-thermal collector, electricity as well as thermal energy can be produced at the same time. These collectors can produce also cooling energy at nighttime by longwave radiation exchange with the night sky and convection losses to the ambient air. Such a renewable trigeneration system offers new fields of applications. However, the technical, ecological and economical aspects of such systems are still largely unexplored.
In this work, the potential of a PVT system to heat and cool office buildings in three different climate zones is investigated. In the investigated system, PVT collectors act as a heat source and heat sink for a reversible heat pump. Due to the reduced electricity consumption (from the grid) for heat rejection, the overall efficiency and economics improve compared to a conventional solar cooling system using a reversible air-to-water heat pump as heat and cold source.
A parametric simulation study was carried out to evaluate the system design with different PVT surface areas and storage tank volumes to optimize the system for three different climate zones and for two different building standards. It is shown such systems are technically feasible today. With a maximum utilization of PV electricity for heating, ventilation, air conditioning and other electricity demand such as lighting and plug loads, high solar fractions and primary energy savings can be achieved.
Annual costs for such a system are comparable to conventional solar thermal and solar electrical cooling systems. Nevertheless, the economic feasibility strongly depends on country specific energy prices and energy policy. However, even in countries without compensation schemes for energy produced by renewables, this system can still be economically viable today. It could be shown, that a specific system dimensioning can be found at each of the investigated locations worldwide for a valuable economic and ecological operation of an office building with PVT technologies in different system designs.
On the design of an urban data and modeling platform and its application to urban district analyses
(2020)
An integrated urban platform is the essential software infrastructure for smart, sustainable and resilitent city planning, operation and maintenance. Today such platforms are mostly designed to handle and analyze large and heterogeneous urban data sets from very different domains. Modeling and optimization functionalities are usually not part of the software concepts. However, such functionalities are considered crucial by the authors to develop transformation scenarios and to optimized smart city operation. An urban platform needs to handle multiple scales in the time and spatial domain, ranging from long term population and land use change to hourly or sub-hourly matching of renewable energy supply and urban energy demand.