The hotspot detection has received much attention in the recent years due to a substantial mismatch between lithography wavelength and semiconductor technology feature size. This mismatch causes diffraction when transferring the layout from design onto a silicon wafer. As a result, open or short circuits (i.e. lithography hotspots) are more likely to be produced. Additionally, increasing numbers of semiconductors devices on a wafer required more time for the lithography hotspot detection analysis. In this work, we propose a fast and accurate solution based on novel artificial neural network (ANN) architecture for precise lithography hotspot detection using a convolution neural network (CNN) adopting a state of-the-art technique. The experimental results showed that the proposed model gained accuracy improvement over current state-of-theart approaches. The final code has been made publicly available.
Lithographical hotspot (LH) detection using deep learning (DL) has received much attention in the recent years. It happens mainly due to the facts the DL approach leads to a better accuracy over the traditional, state-of-the-art programming approaches. The purpose of ths study is to compare existing data augmentation (DA) techniques for the integrated circuit (IC) mask data using DL methods. DA is a method which refers to the process of creating new samples similar to the training set, thereby helping to reduce the gap between classes as well as improving the performance of the DL system. Experimental results suggest that the DA methods increase overall DL models performance for the hotspot detection tasks.
This paper introduces a novel placement methodology for a common-centroid (CC) pattern generator. It can be applied to various integrated circuit (IC) elements, such as transistors, capacitors, diodes, and resistors. The proposed method consists of a constructive algorithm which generates an initial, close to the optimum, solution, and an iterative algorithm which is used subsequently, if the output of constructive algorithm does not satisfy the desired criteria. The outcome of this work is an automatic CC placement algorithm for IC element arrays. Additionally, the paper presents a method for the CC arrangement evaluation. It allows for evaluating the quality of an array, and a comparison of different placement methods.