Refine
Document Type
- Conference proceeding (36)
- Journal article (26)
- Book chapter (1)
Is part of the Bibliography
- yes (63)
Institute
Publisher
- Elsevier (29)
- Stellenbosch University (8)
- Springer (6)
- IEEE (3)
- LIT Verlag (3)
- Technische Universität Chemnitz (3)
- Technische Informationsbibliothek (2)
- Curran Associates Inc. (1)
- IGI Global (1)
- Leibniz-Universität Hannover (1)
Fundamentale Veränderungen der heutigen Arbeitswelt stellen Menschen, Systeme, Prozesse und ganze Organisationen vor erhebliche Herausforderungen. Der Faktor Mensch leistet in allen Bereichen dieses Wirkgefüges einen essentiellen Beitrag zum Wettbewerbsvorteil vieler produzierender Unternehmen am Standort Deutschland. Der Wandel von Automatisierung zu selbststeuernden Unternehmen geht dabei nicht spurlos an dem wandlungsfähigsten Glied dieses Gefüges, dem Menschen, vorüber. Belastungsarten verändern sich, singuläre Bewältigungsstrategien genügen nicht mehr, um einen optimalen Beanspruchungszustand jedes einzelnen Individuums zu erreichen und gleichzeitig das höchstmögliche Potenzial zu schöpfen. Das Belastungs- und Beanspruchungscockpit bildet einen Lösungsansatz zur systematischen und durchgängigen Bewertung von Belastungszuständen und der individuellen Beanspruchung von Beschäftigten an Montagearbeitsplätzen. Es liefert in Echtzeit Informationen zum Belastungs- und Beanspruchungszustand des Mitarbeiters und kann mit Ergonomiebewertungsverfahren verknüpft werden. Der Aspekt der Multidimensionalität umfasst die Bewertung verschiedener Indikatoren unter Betrachtung ihrer Wirkzusammenhänge.
System- und Schnittstellenbeherrschung, Ideen- und Innovationsmanagement sowie die virtuell integrierte Produkt- und Prozessplanung sind zu entwickelnde Kompetenzen, die der veränderten Rolle des Menschen in der Industrie 4.0 Rechnung tragen. Dezidiert adressiert werden können diese in zukunftsweisend ausgerüsteten Lernfabriken.
In the last decade, numerous learning factories for education, training, and research have been built up in industry and academia. In recent years learning factory initiatives were elevated from a local to a European and then to a worldwide level. In 2014 the CIRP Collaborative Working Group (CWG) on Learning Factories enables a lively exchange on the topic "Learning Factories for future oriented research and education in manufacturing". In this paper results of discussions inside the CWG are presented. First, what is meant by the term Learning Factory is outlined. Second, based on the definition a description model (morphology) for learning factories is presented. The morphology covers the most relevant characteristics and features of learning factories in seven dimensions. Third, following the morphology the actual variance of learning factory manifestations is shown in six learning factory application scenarios from industrial training over education to research. Finally, future prospects of the learning factory concept are presented.
Shorter product life cycles and emerging technologies in the field of industrial equipment are changing the prerequisites and circumstances under which the design of assembly and logistics systems take place. Planners have to adapt the production in accordance with the underlying product at a higher pace, oversee a more complex system and - most importantly - find the ideal solution for functional as well as social interaction between humans and machines in a cyber-physical system. Such collaborative work systems consider the individual capabilities and potentials of humans and machines to combine them in a manner that assists the operator during his daily work routine towards more productive, less burdening work. To be able to design work systems which act on that maxim, specific competences such as the ability of integrated process and product planning as well as systems and interface competence are required. The ESB Logistics Learning Factory trains students as well as professionals to gain such qualification by providing a close-to-reality learning environment based on a didactical concept which covers all relevant methods for ergonomic work system design and a state-of-the-art infrastructure composed of a manual assembly system, service robots, visual assistance systems, sensor-based work load monitoring and logistical resources. Group-based, activity oriented scenarios enable the participants to put the learnings into practice within their professional environments. By this, learning factories have an indirect impact on the transfer of proven best practices to the industry and thereby on the diffusion of the idea of human-centric working environment.
In academia and industry learning factories are established as close-to-reality learning environments for education and training in the manufacturing domain. Although the approach and concept of existing learning factories is often similar, orientation and design of individual facilities are diverse. So far, there is no structured framework to describe learning factory approaches. In the paper a multidimensional description model is presented in form of a morphology which can be used as a starting point for the structuring and classification of existing learning factory application scenarios as well as a support for the development and improvement of learning factory approaches.
Die steigende Personalisierbarkeit von Produkten fuhrt zu einem wachsenden Variantenspektrum in der Fertigung. Nicht zuletzt aufgrund der damit einhergehenden Produktionskomplexität und den hohen Wandlungsanforderungen an die Montage werden viele komplexe Stückgüter weiterhin überwiegend manuell montiert. Visuelle Assistenzsysteme geben den Mitarbeitern die nötige Handlungsunterstützung, wenn kein Produkt dem anderen gleicht und damit das Fehlerpotenzial steigt.
Shorter product life cycles and emerging technologies are changing the circumstances under which the design of assembly and logistics systems has to be carried out. Engineers are in charge of adapting the production in accordance with the underlying product at a higher pace, oversee a more complex system and find the ideal solution for a functional work system design as well as social interactions between humans and machines in cyber-physical systems. Such collaborative work systems consider the individual capabilities and potentials of humans and machines to combine them in a manner that assists the operator during his daily work routine. To be able to design such work systems, specific competences such as the ability of integrated process and product planning as well as systems and interface competence are required. Learning factories train students as well as professionals to gain such qualifications by providing a close-to-reality learning environment based on a didactical concept which covers all relevant methods for ergonomic work system design and a state-of-the-art infrastructure. Group-based, activity oriented scenarios enable the participants to put the learnings into their everyday work life. Thereby, learning factories have an indirect impact on the transfer of proven best practices to the industry.
The paper describes a new stimulus using learning factories and an academic research programme - an M.Sc. in Digital Industrial Management and Engineering (DIME) comprising a double degree - to enhance international collaboration between four partner universities. The programme will be structured in such a way as to maintain or improve the level of innovation at the learning factories of each partner. The partners agreed to use Learning Factory focus areas along with DIME learning modules to stimulate international collaboration. Furthermore, they identified several research areas within the framework of the DIME program to encourage horizontal and vertical collaboration. Vertical collaboration connects faculty expertise across the Learning Factory network to advance knowledge in one of the focus areas, while Horizontal collaboration connects knowledge and expertise across multiple focus areas. Together they offer a platform for students to develop disciplinary and cross-disciplinary applied research skills necessary for addressing the complex challenges faced by industry. Hence, the university partners have the opportunity to develop the learning factory capabilities in alignment with the smart manufacturing concept. The learning factory is thus an important pillar in this venture. While postgraduate students/researchers in the DIME program are the enablers to ensure the success of entire projects, the learning factory provides a learning environment which is entirely conducive to fostering these successful collaborations. Ultimately, the partners are focussed on utilising smart technologies in line with the digitalization of the production process.
While academia and industry see large potential for human-robot collaboration (HRC), only a small number of realized HRC application is currently found in industry. To gather more data about current hindrances to wider implementation of collaborative robots, a study among 15 robot manufactureres and 14 system integrators of collaborative robot technology has been conducted through a predesigned questionnaire procedure. Additionally, five industrial users of human-robot collaboration have been interviewed on the main challenges they experienced during the initial implementation process. The quantitative data has been analyzed using the Wilcoxon-Signed-Rank-Test. Accoring to the study participants, the main challenges within the implementation currently are the identification of HRC-suitable processes, the application of relevant safety norms (such as ISO 10218, ISO/TS 15066) and the application-individual risk assessment.
The level of automation in intralogistics has steadily increased over recent years. For small and medium-sized enterprises (SMEs), however, the associated digital change is a major challenge. Since most SMEs are facing increasing sales volumes (e.g. due to e-commerce and good overall economy) in combination with decreasing lot sizes due to the market demand for individualized products, SMEs have to find innovative solutions to cope with these challenges in production as well as in logistics. Innovative technologies, like 3D printing technologies for the production for small lot sizes and future-oriented intralogistics technologies can serve as enablers in logistics to realize flexible logistic processes for increasing market requiremments. Considering that, this paper examines innovative and future-oriented technologies for intralogistics such as smart containers, driverless forklift systems, data glasses, smart shelves and smart pallets regarding their potential for SMEs. This explorative research paper shows that digital technologies are already suitable and available for SMEs.However, challenges are still seen in areas like the identification and digitalization potential and the financing of these new projects. The primary reason escpecially for SMEs for this is that they have to make investments based on an economically feasible payback period and less based on prestigious reasons like digitalization flagship projecs done by large corporations. In addition, the identification of feasible starting points for digitalization within intralogistic systems embedded in specific factory processes is a major challenge not only for SMEs.