Refine
Document Type
- Journal article (5)
Language
- English (5)
Has full text
- yes (5)
Is part of the Bibliography
- yes (5)
Institute
- Life Sciences (5)
Here, we study resin cure and network formation of solid melamine formaldehyde pre-polymer over a large temperature range viadynamic temperature curing profiles. Real-time infrared spectroscopy is used to analyze the chemical changes during network formation and network hardening. By applying chemometrics (multivariate curve resolution,MCR), the essential chemical functionalities that constitute the network at a given stage of curing are mathematically extracted and tracked over time. The three spectral components identified by MCR were methylol-rich, ether linkages-rich and methylene linkages-rich resin entities. Based on dynamic changes of their characteristic spectral patterns in dependence of temperature, curing is divided into five phases: (I) stationary phase with free methylols as main chemical feature, (II) formation of flexible network cross-linked by ether linkages, (III) formation of rigid, ether-cross-linked network, (IV) further hardening via transformation of methylols and ethers into methylene-cross-linkages, and (V) network consolidation via transformation of ether into methylene bridges. The presented spectroscopic/chemometric approach can be used as methodological basis for the functionality design of MF-based surface films at the stage of laminate pressing, i.e., for tailoring the technological property profile of cured MF films using a causal understanding of the underlying chemistry based on molecular markers and spectroscopic fingerprints.
During curing of thermosetting resins the technologically relevant properties of binders and coatings develop. However, curing is difficult to monitor due to the multitude of chemical and physical processes taking place. Precise prediction of specific technological properties based on molecular properties is very difficult. In this study, the potential of principal component analysis (PCA) and principal component regression (PCR) in the analysis of Fourier transform infrared (FTIR) spectra is demonstrated using the example of melamine-formaldehyde (MF) resin curing in solid state. FTIR/PCA-based reaction trajectories are used to visualize the influence of temperature on isothermal cure. An FTIR/PCR model for predicting the hydrolysis resistance of cured MF resin from their spectral fingerprints is presented which illustrates the advantages of FTIR/PCR compared to the combination differential scanning calorimetry/isoconversional kinetic analysis. The presented methodology is transferable to the curing reactions of any thermosetting resin and can be applied to model other technologically relevant final properties as well.
Melamine-formaldehyde (MF) resins are widely used as surface finishes for engineered wood-based panels in decorative laminates. Since no additional glue is applied in lamination, the overall residual curing capacity of MF resins is of great technological importance. Residual curing capacity is measured by differential scanning calorimetry (DSC) as the exothermic curing enthalpy integral of the liquid resin. After resin synthesis is completed, the resulting pre-polymer has a defined chemical structure with a corresponding residual curing capacity. Predicting the residual curing capacity of a resin batch already at an early stage during synthesis would enable corrective measures to be taken by making adjustments while synthesis is still in progress. Thereby, discarding faulty batches could be avoided. Here, by using a batch modelling approach, it is demonstrated how quantitative predictions of MF residual curing capacity can be derived from inline Fourier Transform infrared (FTIR) spectra recorded during resin synthesis using partial least squares regression. Not only is there a strong correlation (R2 = 0.89) between the infrared spectra measured at the end of MF resin synthesis and the residual curing capacity. The inline reaction spectra obtained already at the point of complete dissolution of melamine upon methylolation during the initial stage of resin synthesis are also well suited for predicting final curing performance of the resin. Based on these IR spectra, a valid regression model (R2 = 0.85) can be established using information obtained at a very early stage of MF resin synthesis.
The isothermal curing of melamine resin is investigated by in-line infrared spectroscopy at different temperatures. The infrared spectra are decomposed into time courses of characteristic spectral patterns using Multivariate Curve Resolution (MCR). It was found that depending on the applied curing temperature, melamine films with different spectral fingerprints and correspondingly different chemical network structures are formed. The network structures of fully cured resin films are specific for the applied curing temperatures used and cannot simply be compensated by changes in the curing time. For industrial curing processes, this means that cure temperature is the main system determining factor at constant M:F ratio. However, different MF resin networks can be specifically obtained from one and the same melamine resin by suitable selection of the curing time and temperatures profiles to design resin functionality. The spectral fingerprints after short curing time as well as after long curing time reflect the fundamental differences in the thermoset networks that can be obtained with industrial short-cycle and multi-daylight presses.
The present study investigated the possibilities and limitations of using a low-cost NIR spectrometer for the verification of the presence of the declared active pharmaceutical ingredients (APIs) in tablet formulations, especially for medicine screening studies in low-resource settings. Spectra from 950 to 1650 nm were recorded for 170 pharmaceutical products representing 41 different APIs, API combinations or placebos. Most of the products, including 20 falsified medicines, had been collected in medicine quality studies in African countries. After exploratory principal component analysis, models were built using data-driven soft independent modelling of class analogy (DD-SIMCA), a one-class classifier algorithm, for tablet products of penicillin V, sulfamethoxazole/trimethoprim, ciprofloxacin, furosemide, metronidazole, metformin, hydrochlorothiazide, and doxycycline. Spectra of amoxicillin and amoxicillin/clavulanic acid tablets were combined into a single model. Models were tested using Procrustes cross-validation and by projection of spectra of tablets containing the same or different APIs. Tablets containing no or different APIs could be identified with 100 % specificity in all models. A separation of the spectra of amoxicillin and amoxicillin/clavulanic acid tablets was achieved by partial least squares discriminant analysis. 15 out of 19 external validation products (79 %) representing different brands of the same APIs were correctly identified as members of the target class; three of the four rejected samples showed an API mass percentage of the total tablet weight that was out of the range covered in the respective calibration set. Therefore, in future investigations larger and more representative spectral libraries are required for model building. Falsified medicines containing no API, incorrect APIs, or grossly incorrect amounts of the declared APIs could be readily identified. Variation between different NIR-S-G1 spectroscopic devices led to a loss of accuracy if spectra recorded with different devices were pooled. Therefore, piecewise direct standardization was applied for calibration transfer. The investigated method is a promising tool for medicine screening studies in low-resource settings.