Close and safe interaction of humans and robots in joint production environments is technically feasible, however should not be implemented as an end in itself but to deliver improvement in any of a production system’s target dimensions. Firstly, this paper shows that an essential challenge for system integrators during the design of HRC applications is to identify a suitable distribution of available tasks between a robotic and a human resource. Secondly, it proposes an approach to determine task allocation by considering the actual capabilities of both human and robot in order to improve work quality. It matches those capabilities with given requirements of a certain task in order to identify the maximum congruence as the basis for the allocation decision. The approach is based on a study and subsequent generic description of human and robotic capabilities as well as a heuristic procedure that facilities the decision making process.
Learning factories present a promising environment for education, training and research, especially in manufacturing related areas which are a main driver for wealth creation in any nation. While numerous learning factories have been built in industry and academia in the last decades, a comprehensive scientific overview of the topic is still missing. This paper intends to close this gap establishing the state of the art of learning factories. The motivations, historic background, and the didactic foundations of learning factories are outlined. Definitions of the term learning factory and the corresponding morphological model are provided. An overview of existing learning factory approaches in industry and academia is provided, showing the broad range of different applications and varying contents. The state of the art of learning factories curricula design and their use to enhance learning and research as well as potentials and limitations are presented. Conclusions and an outlook on further research priorities are offered.
In recent years, the numer of hybrid work systems using human robot collaboration (HRC) increased in industrial production environments - enhancing productivity while reducing work-related burden. Despite growing availability of HRC-suitable manipulation and safety technology, tools and techniques facilitating the design, planning and implementation process are still lacking. System engineers who strive to implement technically feasible, ergonomically meaningful and economically beneficial HRC application need to make design and technology decisions in various subject areas, whereas the design alternatives per morphological analysis is applied to establish a description model that can serve as both a supporting design guideline for future HRC application of value-adding, industrial quality as well as a tool to characterize and compare existing applications. It focuses on HRC within assembly processes, and illustrates the complexity of HRC applications in a comprehensible manner through its multi-dimensional structure. The morphology has been validated through its application on various existing industrial HRC applications, research demonstrators and interviews of experts from academia.
In the last decade, numerous learning factories for education, training, and research have been built up in industry and academia. In recent years learning factory initiatives were elevated from a local to a European and then to a worldwide level. In 2014 the CIRP Collaborative Working Group (CWG) on Learning Factories enables a lively exchange on the topic "Learning Factories for future oriented research and education in manufacturing". In this paper results of discussions inside the CWG are presented. First, what is meant by the term Learning Factory is outlined. Second, based on the definition a description model (morphology) for learning factories is presented. The morphology covers the most relevant characteristics and features of learning factories in seven dimensions. Third, following the morphology the actual variance of learning factory manifestations is shown in six learning factory application scenarios from industrial training over education to research. Finally, future prospects of the learning factory concept are presented.
Die steigende Personalisierbarkeit von Produkten fuhrt zu einem wachsenden Variantenspektrum in der Fertigung. Nicht zuletzt aufgrund der damit einhergehenden Produktionskomplexität und den hohen Wandlungsanforderungen an die Montage werden viele komplexe Stückgüter weiterhin überwiegend manuell montiert. Visuelle Assistenzsysteme geben den Mitarbeitern die nötige Handlungsunterstützung, wenn kein Produkt dem anderen gleicht und damit das Fehlerpotenzial steigt.
Due to the complexity of assembly processes, a high ratio of tasks is still performed by human workers. Short-cyclically changing work contents due to smaller lot sizes, especially the varied series assesmbly, increases both the need for information support as well as the risk of rising physical and psychological stress. The use of technical and digital assistance systems can counter these challenges. Through the integration of information and communication technology as well as collaborative assembly technologies, hybrid cyber-physical assembly systems will emerge. Widely established assembly planning approaches for digital and technical support systems in cyber physical assembly systems will be outlined and discussed with regard to synergies and delimitations of planning perspectives.
Strategy to adjust people’s performance capabilities to new requirements and grantee employability in the world of work. Good examples for this are the current changes in the logistics environment. Regularly, new services and processes close to production were taken into the portfolio of logistics enterprises, so the daily Tasks are changing continuously for the skilled works.
LOPEC aims in developing and offering special-tailored training for Lean Logistics and required basic skills for skilled workers on shopfloor level. Needed know-how for today’s challenges in logistics will be transferred. Another aspect of LOPEC is the development and use of a personal excellence self-assessment that allows a Person to assess and thus improve his/her own level of maturity in employability skills. Thus, LOPEC is aiming at People ehancement as entry ticket to lifelong continuous learning by increasing the maturity level of personal logistic excellence. A common European view for “Logistics personal excellence” for skilled workers will ensure that the final product is an open product, using international, pan European validated standards. As results LOPEC will provide training modules for post-secondary education in the area of Lean Logistics, required basics skills and offers transparency of personal excellence with a personal self-assessment Software solution, regarding the personal maturity Level of hard and soft skills at any time. It can be used as an innovative tool for monitoring personal lifelong learning routes as well as within companies as a strategic tool within Human Resource Development.