Refine
Document Type
- Journal article (2)
- Conference proceeding (1)
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Life Sciences (2)
- Technik (1)
Publisher
- American Chemical Society (1)
- De Gruyter (1)
- IEEE (1)
Despite its success against cancer, photothermal therapy (PTT) (>50 °C) suffers from several limitations such as triggering inflammation and facilitating immune escape and metastasis and also damage to the surrounding normal cells. Mild-temperature PTT has been proposed to override these shortcomings. We developed a nanosystem using HepG2 cancer cell membrane-cloaked zinc glutamate-modified Prussian blue nanoparticles with triphenylphosphine-conjugated lonidamine (HmPGTL NPs). This innovative approach achieved an efficient mild-temperature PTT effect by downregulating the production of intracellular ATP. This disrupts a section of heat shock proteins that cushion cancer cells against heat. The physicochemical properties, anti-tumor efficacy, and mechanisms of HmPGTL NPs both in vitro and in vivo were investigated. Moreover, the nanoparticles cloaked with the HepG2 cell membrane substantially prolonged the circulation time in vivo. Overall, the designed nanocomposites enhance the efficacy of mild-temperature PTT by disrupting the production of ATP in cancer cells. Thus, we anticipate that the mild-temperature PTT nanosystem will certainly present its enormous potential in various biomedical applications.
In vitro, hydrogel-based ECMs for functionalizing surfaces of various material have played an essential role in mimicking native tissue matrix. Polydimethylsiloxane (PDMS) is widely used to build microfluidic or organ-on-chip devices compatible with cells due to its easy handling in cast replication. Despite such advantages, the limitation of PDMS is its hydrophobic surface property. To improve wettability of PDMS-based devices, alginate, a naturally derived polysaccharide, was covalently bound to the PDMS surface. This alginate then crosslinked further hydrogel onto the PDMS surface in desired layer thickness. Hydrogel-modified PDMS was used for coating a topography chip system and in vitro investigation of cell growth on the surfaces. Moreover, such hydrophilic hydrogel-coated PDMS is utilized in a microfluidic device to prevent unspecific absorption of organic solutions. Hence, in both exemplary studies, PDMS surface properties were modified leading to improved devices.
This paper presents a permanent magnet tubular linear generator system for powering passive sensors using vertical vibration harvesting energy. The system consists of a permanent magnet tubular linear vibration generator and electric circuits. By using the design of mechanical resonant movers, the generator is capable of converting low frequencies small amplitude vertical vibration energy into more regular sinusoidal electrical energy. The distribution of the magnetic field and electromotive force are calculated by Finite Element Analysis. The characteristics of the linear vibration generator system are observed. The experimental results show the generator can produce about 0.4W~1.6W electrical power when the vibration source's amplitude is fixed on 2mm and the frequencies are between 13Hz and 22Hz.