Refine
Document Type
- Journal article (3)
- Conference proceeding (2)
Language
- English (5)
Has full text
- yes (5)
Is part of the Bibliography
- yes (5)
Institute
- Technik (5)
Publisher
- Springer (2)
- Elsevier (1)
- IEEE (1)
- Xi'an Polytechnic University (1)
Aimed at the problem that the accuracy of face image classification in complex environment is not high, a network model F-Net suitable for aesthetic classification of face images is proposed. Based on LeNet-5, the model uses convolutional layers to extract facial image features in complex backgrounds, optimized parameters in the network model, and changes the number of convolutional layers and fully connected layer feature elements in the model. The experimental results show that the F-Net network model proposed in this paper has a face image classifation accuracy of 73% in complex environment background, which is better than other classical convolutional neural network classification models.
Unsupervised question-retrieval approach based on topic keywords filtering and multi-task learning
(2024)
Currently, the majority of retrieval-based question-answering systems depend on supervised training using question pairs. However, there is still a significant need for further exploration of how to employ unsupervised methods to improve the accuracy of retrieval-based question-answering systems. From the perspective of question topic keywords, this paper presents TFCSG, an unsupervised question-retrieval approach based on topic keyword filtering and multi-task learning. Firstly, we design the topic keyword filtering algorithm, which, unlike the topic model, can sequentially filter out the keywords of the question and can provide a training corpus for subsequent unsupervised learning. Then, three tasks are designed in this paper to complete the training of the question-retrieval model. The first task is a question contrastive learning task based on topic keywords repetition strategy, the second is questions and its corresponding sequential topic keywords similarity distribution task, and the third is a sequential topic keywords generation task using questions. These three tasks are trained in parallel in order to obtain quality question representations and thus improve the accuracy of question-retrieval task. Finally, our experimental results on the four publicly available datasets demonstrate the effectiveness of the TFCSG, with an average improvement of 7.1%, 4.4%, and 3.5% in the P@1, MAP, and MRR metrics when using the BERT model compared to the baseline model. The corresponding metrics improved by 5.7%, 3.5% and 3.0% on average when using the RoBERTa model. The accuracy of unsupervised similar question-retrieval task is effectively improved. In particular, the values of P@1, P@5, and P@10 are close, the retrieved similar questions are ranked more advance.
An interactive clothing design and a personalized virtual display with user’s own face are presented in this paper to meet the requirement of personalized clothing customization. A customer interactive clothing design approach based on genetic engineering ideas is analyzed by taking suit as an example. Thus, customers could rearrange the clothing style elements, chose available color, fabric and come up with their own personalized suit style. A web 3D customization prototype system of personalized clothing is developed based on the Unity3D and VR technology. The layout of the structure and functions combined with the flow of the system are given. Practical issues such as 3D face scanning, suit style design, fabric selection, and accessory choices are addressed also. Tests to the prototype system indicate that it could show realistic clothing and fabric effect and offer effective visual and customization experience to users.
The aim of this work is the development of artificial intelligence (AI) application to support the recruiting process that elevates the domain of human resource management by advancing its capabilities and effectiveness. This affects recruiting processes and includes solutions for active sourcing, i.e. active recruitment, pre-sorting, evaluating structured video interviews and discovering internal training potential. This work highlights four novel approaches to ethical machine learning. The first is precise machine learning for ethically relevant properties in image recognition, which focuses on accurately detecting and analysing these properties. The second is the detection of bias in training data, allowing for the identification and removal of distortions that could skew results. The third is minimising bias, which involves actively working to reduce bias in machine learning models. Finally, an unsupervised architecture is introduced that can learn fair results even without ground truth data. Together, these approaches represent important steps forward in creating ethical and unbiased machine learning systems.
Most Question-answering (QA) systems rely on training data to reach their optimal performance. However, acquiring training data for supervised systems is both time-consuming and resource-intensive. To address this, in this paper, we propose TFCSG, an unsupervised similar question retrieval approach that leverages pre-trained language models and multi-task learning. Firstly, topic keywords in question sentences are extracted sequentially based on a latent topic-filtering algorithm to construct unsupervised training corpus data. Then, the multi-task learning method is used to build the question retrieval model. There are three tasks designed. The first is a short sentence contrastive learning task. The second is the question sentence and its corresponding topic sequence similarity judgment task. The third is using question sentences to generate their corresponding topic sequence task. The three tasks are used to train the language model in parallel. Finally, similar questions are obtained by calculating the cosine similarity between sentence vectors. The comparison experiment on public question datasets that TFCSG outperforms the comparative unsupervised baseline method. And there is no need for manual marking, which greatly saves human resources.