Refine
Document Type
- Doctoral Thesis (5)
Is part of the Bibliography
- yes (5)
Institute
- Life Sciences (4)
- Informatik (1)
Publisher
The targeted design of monodisperse, mesoporous silica microspheres (MPSMs) as HPLC separation phases is still a challenge. The MPSMs can be generated via a multi-step template-assisted method. However, this method and the factors affecting the individual process steps and resulting material properties are scarcely understood, and specific control of the complex multi-step process has been hardly discussed. In this work, the key synthesis steps were systematically investigated by means of statistical Design of Experiment (DoE). In particular, three steps were considered in detail: 1) the synthesis of porous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (p(GMA-co-EDMA)) particles, which as template particles, determine the structure for the final MPSMs. In this context, functional models were generated, which allow the control of the template properties pore volume, pore size and specific surface area. 2) In the presence of amino-functionalized template particles, the sol-gel process was carried out under Stöber process conditions. The water to tetraethyl orthosilicate (TEOS) ratio, as well as the concentration of ammonia as basic catalyst were varied according to a face-centered central composite design (FCD). The incorporation of silica nanoparticles (SNPs) into the pore network of the porous polymers was investigated by scanning electron microscopy (SEM), evaluation of the pore properties assessed by nitrogen sorption measurements and determination of the inorganic content by thermogravimetric analysis (TGA). Here, the material properties, such as the amount of attached silica, can be specifically controlled in the resulting organic/silica hybrid material (hybrid beads, HBs). Furthermore, depending on the sol-gel conditions three, potentially four, reaction regimes were identified, leading to different HBs. These range from porous polymer particles coated with a thin protective silica layer, to interpenetrating networks of polymer and silica, to potential particles consisting of a porous polymer core coated with a silica shell. Also, the effects of the use of different precursors and solvents on silica incorporation were investigated. 3) To obtain MPSMs from the HBs, the organic polymer template was removed by calcination. The effects of sol-gel process conditions on the resulting MPSMs were evaluated and relationships between process conditions and material properties were shown in predictive models. Fully porous, spherical, monodisperse silica particles with sizes ranging from 0.5 µm to 7.8 µm and pore sizes from 3.5 nm to 72.4 nm can be prepared specifically. Subsequent to organo-functionalization, prepared MPSMs were applied as reversed-phase HPLC column materials. Here, the columns were successfully applied for the separation of proteins and amino acids. The separation performance of the materials depends largely on the property profile of the MPSMs, which is predetermined during the preparation of the HBs.
Gegenstand dieser Arbeit ist die Darstellung und Charakterisierung einheitlicher, mesoporöser Silica-Partikel (MPSM) im Mikrometerbereich mit maßgeschneiderten Partikel- und Porendesign für die Hochleistungsflüssigkeitschromatographie. Die Synthese umfasst die Einlagerung von Silica-Nanopartikeln (SNP) in poröse organische Template, welche anschließend bei 600°C zersetzt werden. Die Impfsuspensionspolymerisation von Polystyrol-Partikeln, unter Verwendung von Glycidylmethacrylat, Ethylenglycoldimethacrylat und Porogenen, ermöglicht die Herstellung hochgradig einheitlicher, poröser p(GMA-co-EDMA)-Template. Der Einfluss wesentlicher Faktoren, einschließlich des Monomer-Porogen-Verhältnisses, des Monomerverhältnisses und der Porogenzusammensetzung, werden systematisch untersucht sowie ihre Auswirkungen auf die Porengröße, das Porenvolumen und die spezifische Oberfläche erläutert. Die Anbindung aminofunktionalisierter Substanzen erfolgt durch die Ringöffnung der Epoxidgruppe. Im anschließenden basischen Sol-Gel-Prozess werden die Silica-Nanopartikel aufgrund der Ladungsunterschiede in die funktionalisierten p(GMA-co-EDMA)-Template eingebaut. Die Partikelgröße der SNP beeinflusst wesentlich die Poreneigenschaften der MPSM und hängt von drei Faktoren ab: (i) der Wachstumsgeschwindigkeit in der kontinuierlichen Phase, die durch die Einstellungen des Sol-Gel-Prozesses gesteuert wird, (ii) der Diffusionsrate, die durch elektrostatische Anziehung reguliert wird und vom Grad der Funktionalisierung abhängt und (iii) der Porosität des Polymer-Templats. Die gezielte Anpassung der Poreneigenschaften durch die Prozesseinstellungen erlaubt die präzise Herstellung von MPSM, die auf spezifische Trennherausforderungen zugeschnitten werden und somit die Qualität der HPLC verbessern. Die vorgestellte Synthesestrategie ermöglicht, aufgrund des stufenweisen molekularen Aufbaus, eine bessere Adaption der stationären Phase an spezifische Trennherausforderungen.
Within the scope of the present cumulative doctoral thesis six scientific papers were published which illustrates that modern reaction model-free (=isoconversional) kinetic analysis (ICKA) methods represents a universal and effective tool for the controlled processing of thermosetting materials. In order to demonstrate the universal applicability of ICKA methods, the thermal cure of different thermosetting materials having a very broad range of chemical composition (melamine-formaldehyde resins, epoxy resins, polyester-epoxy resins, and acrylate/epoxy resins) were analyzed and mathematically modelled. Some of the materials were based on renewable resources (an epoxy resin was made from hempseed oil; linseed oil was modified into an acrylate/epoxy resin). With the aid of ICKA methods not only single-step but also complex multi-step reactions were modelled precisely. The analyzed thermosetting materials were combined with wood, wood-based products, paper, and plant fibers which are processed to various final products. Some of the thermosetting materials were applied as coating (in form of impregnated décor papers or powder and wet coatings respectively) on wood substrates and the epoxy resin from hempseed oil was mixed with plant fibers and processed into bio-based composites for lightweight applications. From the final products mechanical, thermal, and surface properties were determined. The activation energy as function of cure conversion derived from ICKA methods was utilized to predict accurately the thermal curing over the course of time for arbitrary cure conditions. Furthermore the cure models were used to establish correlations between the cross-linking during processing into products and the properties of the final products. Therewith it was possible to derive the process time and temperature that guarantee optimal cross-linking as well as optimal product properties
Melamine Formaldehyde (MF) resins are thermosetting synthetic materials. The present work deals with the evaluation of the impregnation process, modification of resin structure and abrasion resistant applications. During the industrial process paper is impregnated by aqueous oligomers. The drying procedure and the corresponding residual volatile content is a crucial step during production, because of its influence on the later surface quality. Standard measurement routines do not differentiate between physical and chemical origin. Using TGA and DSC methods, the evaporation of water could be characterized as a clear separation of solvent evaporation and the release of water during condensation. The method could be used to upgrade current quality control as well as reaction condition tuning. According to the characteristics of duroplastic material, the formed network is very dense but also brittle. Challenging applications require highly modified resins in order to decrease the network density. Substances from bio renewable resources offer chemical possibilities for covalent crosslinking. Several substance classes have been tested for compatibility via hydroxyl groups or amines. The addition of polyols under appropriate reaction conditions showed chemical incorporation into the MF prepolymer. NMR methods have been used to characterize the resins. The synthesized polymers represent a suitable alternative for the usage in challenging furniture and flooring laminate applications. MF applications for scratch and wear resistant surfaces are commonly reinforced by multiple layer setups with inorganic particles. Fulfilling normative requirements a one sheet setup of decorative paper has been developed and tested. The incorporation of special corundum particles directly on the decorative printed paper combined with a new coating system resulted in surfaces of the requested quality for wear resistance surfaces.
Primäres Ziel und Aufgabe dieser Arbeit ist ... die Entwicklung einer neuen Recyclingmethode für PET, die die Nachteile der bisherigen Verwertungsmethoden vermeidet und unter weitgehendem Erhalt der bereits erbrachten Syntheseleistung definierte Oligomere liefert. Aus diesen können in Folge hochwertige Produkte hergestellt werden.