Informatik
Refine
Document Type
- Conference proceeding (544)
- Journal article (180)
- Book chapter (59)
- Doctoral Thesis (17)
- Book (10)
- Anthology (10)
- Patent / Standard / Guidelines (2)
- Working Paper (2)
- Report (1)
Is part of the Bibliography
- yes (825)
Institute
- Informatik (825)
- Technik (2)
Publisher
- Springer (165)
- Hochschule Reutlingen (102)
- IEEE (82)
- Gesellschaft für Informatik (59)
- Elsevier (38)
- ACM (31)
- IARIA (26)
- Springer Gabler (15)
- De Gruyter (13)
- Deutsche Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V. (9)
OpenAPI, WADL, RAML, and API Blueprint are popular formats for documenting Web APIs. Although these formats are in general both human and machine-readable, only the part of the format describing the syntax of a Web API is machine-understandable. Descriptions, which explain the meaning and purpose of Web API elements, are embedded as natural language text snippets into documents and target human readers but not machines. To enable machines to read and process these state-of-practice Web API documentation, we propose a Transformer model that solves the generic task of identifying a Web API element within a syntax structure that matches a natural language query. For our first prototype, we focus on the Web API integration task of matching output with input parameters and fined-tuned a pre-trained CodeBERT model to the downstream task of question answering with samples from 2,321 OpenAPI documentation. We formulate the original question answering problem as a multiple choice task: given a semantic natural language description of an output parameter (question) and the syntax of the input schema (paragraph), the model chooses the input parameter (answer) in the schema that best matches the description. The paper describes the data preparation, tokenization, and fine-tuning process as well as discusses possible applications of our model as part of a recommender system. Furthermore, we evaluate the generalizability and the robustness of our fine-tuned model, with the result that it achieves an accuracy of 81.46% correctly chosen parameters.
Context
Web APIs are one of the most used ways to expose application functionality on the Web, and their understandability is important for efficiently using the provided resources. While many API design rules exist, empirical evidence for the effectiveness of most rules is lacking.
Objective
We therefore wanted to study 1) the impact of RESTful API design rules on understandability, 2) if rule violations are also perceived as more difficult to understand, and 3) if demographic attributes like REST-related experience have an influence on this.
Method
We conducted a controlled Web-based experiment with 105 participants, from both industry and academia and with different levels of experience. Based on a hybrid between a crossover and a between-subjects design, we studied 12 design rules using API snippets in two complementary versions: one that adhered to a rule and one that was a violation of this rule. Participants answered comprehension questions and rated the perceived difficulty.
Results
For 11 of the 12 rules, we found that violation performed significantly worse than rule for the comprehension tasks. Regarding the subjective ratings, we found significant differences for 9 of the 12 rules, meaning that most violations were subjectively rated as more difficult to understand. Demographics played no role in the comprehension performance for violation.
Conclusions
Our results provide first empirical evidence for the importance of following design rules to improve the understandability of Web APIs, which is important for researchers, practitioners, and educators.
The relevance of Robotic Process Automation (RPA) has increased over the last few years. Combining RPA with Artificial Intelligence (AI) can further enhance the business value of the technology. The aim of this research was to analyze applications, terminology, benefits, and challenges of combining the two technologies. A total of 60 articles were analyzed in a systematic literature review to evaluate the aforementioned areas. The results show that by adding AI, RPA applications can be used in more complex contexts, it is possible to minimize the human factor during the development process, and AI-based decision-making can be integrated into RPA routines. This paper also presents a current overview of the used terminology. Moreover, it shows that by integrating AI, some unseen challenges in RPA projects can emerge, but also a lot of new benefits will come along with it. Based on the outcome, it is concluded that the topic offers a lot of potential, but further research and development is required. The result of this study help researches to gain an overview of the state-of-the-art in combining RPA and AI.
In the last few years, business firms have substantially invested into the artificial intelligence (AI) technology. However, according to several studies, a significant percentage of AI projects fail or do not deliver business value. Due to the specific characteristics of AI projects, the existing body of knowledge about success and failure of information systems (IS) projects in general may not be transferrable to the context of AI. Therefore, the objective of our research has been to identify factors that can lead to AI project failure. Based on interviews with AI experts, this article identifies and discusses 12 factors that can lead to project failure. The factors can be further classified into five categories: unrealistic expectations, use case related issues, organizational constraints, lack of key resources, and, technological issues. This research contributes to knowledge by providing new empirical data and synthesizing the results with related findings from prior studies. Our results have important managerial implications for firms that aim to adopt AI by helping the organizations to anticipate and actively manage risks in order to increase the chances of project success.
Recent advances in artificial intelligence have enabled promising applications in neurosurgery that can enhance patient outcomes and minimize risks. This paper presents a novel system that utilizes AI to aid neurosurgeons in precisely identifying and localizing brain tumors. The system was trained on a dataset of brain MRI scans and utilized deep learning algorithms for segmentation and classification. Evaluation of the system on a separate set of brain MRI scans demonstrated an average Dice similarity coefficient of 0.87. The system was also evaluated through a user experience test involving the Department of Neurosurgery at the University Hospital Ulm, with results showing significant improvements in accuracy, efficiency, and reduced cognitive load and stress levels. Additionally, the system has demonstrated adaptability to various surgical scenarios and provides personalized guidance to users. These findings indicate the potential for AI to enhance the quality of neurosurgical interventions and improve patient outcomes. Future work will explore integrating this system with robotic surgical tools for minimally invasive surgeries.
What might the attendee be able to do after being in your session?
Our work shows how to connect intra-operative devices via IEEE 11073 Service-oriented Device Connectivity (SDC).
Description of the Problem or Gap
Standardized device communication is essential for interoperability, availability of device data, and therefore for the intelligent operating room (OR) and arising solutions. The SDC standard was developed to make information from medical devices available in a uniform manner and enable interoperability. Existing devices are rarely SDC-capable and need interfaces to be interoperable via SDC.
Methods: What did you do to address the problem or gap?
We conceived an SDC-based architecture consisting of a service provider and service consumer. In our concept, the service provider is connected to the medical device and capable to translate the proprietary protocol of the device into SDC and vice versa. The service consumer is used to request or send information via the SDC protocol to the service provider and can function as a uniform bidirectional interface (e.g. for displaying or controlling). This concept was exemplarily demonstrated with the patient monitor MX800 of Philips to retrieve the device data (e.g. vital parameters) via SDC and partly for the operating light marLED X of KLS Martin Group.
Results: What was the outcome(s) of what you did to address the problem or gap?
The patient monitor MX800 was connected to a Raspberry Pi (RPi) via LAN, on which the service provider is running. The python script on the RPi establishes a connection to the monitor and translates incoming and outgoing messages from the proprietary protocol to SDC and vice versa to/from the service consumer. The service consumer is running on a laptop and acts as a simulation for different kinds of systems that want to get vital parameters or other information from the patient monitor. The operating light marLED X was connected to an RPi via USB-to-RS232. A python script on the RPi establishes a connection to the light and makes it possible via proprietary commands to get information of the light (e.g. status) and to control it (e.g. toggle the light, increment the intensity). A translation to SDC is not integrated yet.
Discussion of Results
Our practical implementation shows that medical devices can be accessed via external connections to get device data and control the device via commands. The example SDC implementation of the patient monitor MX800 makes it possible to request its data via the standardized communication protocol SDC. This is also possible for the operating light marLED X if its proprietary protocol is analyzed to be translatable to/from SDC. This would allow to control the device from an external system, or automatically depending on the status of the ongoing procedure. The advantage is, that existing intra-operative devices can be extended by a service provider which is capable of translating the proprietary protocol of the device in SDC and vice versa. This enables interoperability and an intelligent OR that, for example, is aware of all devices, their status, and data and can use this information to optimally support the surgeons and their team (e.g. provision of information, automated documentation). This interoperability allows that future innovations merely need to understand the SDC protocol instead of all vendor-dependent communication protocols.
Conclusion
Standardized device communication is essential to reach interoperability, and therefore intelligent ORs. Our contribution addresses the possibility of subsequently making medical devices SDC-capable. This may eliminate the need of understanding all the different proprietary protocols when developing new innovative solutions for the OR.
Introduction: Even if there is a standard procedure of CI surgery, especially in pediatric surgery surgical steps often differ individually due to anatomical variations, malformations or unforseen events. This is why every surgical report should be created individually, which takes time and relies on the correct memory of the surgeon. A standardized recording of intraoperative data and subsequent storage as well as text processing would therefore be desirable and provides the basis for subsequent data processing, e.g. in the context of research or quality assurance.
Method: In cooperation with Reutlingen University, we conducted a workflow analysis of the prototype of a semi-automatic checklist tool. Based on automatically generated checklists generated from BPMN models a prototype user interface was developed for an android tablet. Functions such as uploading photos and files, manual user entries, the interception of foreseeable deviations from the normal course of operations and the automatic creation of OP documentation could be implemented. The system was tested in a remote usability test on a petrous bone model.
Result: The user interface allows a simple intuitive handling, which can be well implemented in the intraoperative setting. Clinical data as well as surgical steps could be individually recorded and saved via DICOM. An automatic surgery report could be created and saved.
Summary: The use of a dynamic checklist tool facilitates the capture, storage and processing of surgical data. Further applications in clinical practice are pending.
This project aims to evaluate existing big data infrastructures for their applicability in the operating room to support medical staff with context-sensitive systems. Requirements for the system design were generated. The project compares different data mining technologies, interfaces, and software system infrastructures with a focus on their usefulness in the peri-operative setting. The lambda architecture was chosen for the proposed system design, which will provide data for both postoperative analysis and real-time support during surgery.
Purpose
For the modeling, execution, and control of complex, non-standardized intraoperative processes, a modeling language is needed that reflects the variability of interventions. As the established Business Process Model and Notation (BPMN) reaches its limits in terms of flexibility, the Case Management Model and Notation (CMMN) was considered as it addresses weakly structured processes.
Methods
To analyze the suitability of the modeling languages, BPMN and CMMN models of a Robot-Assisted Minimally Invasive Esophagectomy and Cochlea Implantation were derived and integrated into a situation recognition workflow. Test cases were used to contrast the differences and compare the advantages and disadvantages of the models concerning modeling, execution, and control. Furthermore, the impact on transferability was investigated.
Results
Compared to BPMN, CMMN allows flexibility for modeling intraoperative processes while remaining understandable. Although more effort and process knowledge are needed for execution and control within a situation recognition system, CMMN enables better transferability of the models and therefore the system. Concluding, CMMN should be chosen as a supplement to BPMN for flexible process parts that can only be covered insufficiently by BPMN, or otherwise as a replacement for the entire process.
Conclusion
CMMN offers the flexibility for variable, weakly structured process parts, and is thus suitable for surgical interventions. A combination of both notations could allow optimal use of their advantages and support the transferability of the situation recognition system.