Informatik
Refine
Document Type
- Conference Proceeding (46)
- Article (16)
- Part of a Book (1)
- Report (1)
- Working Paper (1)
Is part of the Bibliography
- yes (65)
Institute
- Informatik (65)
Publisher
- Springer (15)
- IEEE (13)
- Gesellschaft für Informatik (7)
- ACM (5)
- Elsevier (5)
- The Association for Computing Machinery, Inc. (3)
- PeerJ Ltd. (2)
- RWTH Aachen (2)
- Springer Science + Business Media B.V (2)
- Wiley-Blackwell (2)
Context: Currently, most companies apply approaches for product roadmapping that are based on the assumption that the future is highly predicable. However, nowadays companies are facing the challenge of increasing market dynamics, rapidly evolving technologies, and shifting user expectations. Together with the adaption of lean and agile practices it makes it increasingly difficult to plan and predict upfront which products, services or features will satisfy the needs of the customers. Therefore, they are struggling with their ability to provide product roadmaps that fit into dynamic and uncertain market environments and that can be used together with lean and agile software development practices.
Objective: To gain a better understanding of modern product roadmapping processes, this paper aims to identify suitable processes for the creation and evolution of product roadmaps in dynamic and uncertain market environments.
Method: We performed a Grey Literature Review (GLR) according to the guidelines from Garousi et al.
Results: 32 approaches to product roadmapping were identified. Typical characteristics of these processes are the strong connection between the product roadmap and the product vision, an emphasis on stakeholder alignment, the definition of business and customer goals as part of the roadmapping process, a high degree of flexibility with respect to reaching these goals, and the inclusion of validation activities in the roadmapping process. An overall goal of nearly all approaches is to avoid waste by early reducing development and business risks. From the list of the 32 approaches found, four representative roadmapping processes are described in detail.
Product roadmaps are an important tool in product development. They provide direction, enable consistent development in relation to a product vision and support communication with relevant stakeholders. There are many different formats for product roadmaps, but they are often based on the assumption that the future is highly predictable. However, especially software-intensive businesses are faced with increasing market dynamics, rapidly evolving technologies and changing user expectations. As a result, many organizations are wondering what roadmap format is appropriate for them and what components it should have to deal with an unpredictable future. Objectives: To gain a better understanding of the formats of product roadmaps and their components, this paper aims to identify suitable formats for the development and handling of product roadmaps in dynamic and uncertain markets. Method: We performed a grey literature review (GLR) according to the guidelines from Garousi. Results: A Google search identified 426 articles, 25 of which were included in this study. First, various components of the roadmap were identified, especially the product vision, themes, goals, outcomes and outputs. In addition, various product roadmap formats were discovered, such as feature-based, goal-oriented, outcome-driven and a theme-based roadmap. The roadmap components were then assigned to the various product roadmap formats. This overview aims at providing initial decision support for companies to select a suitable product roadmap format and adapt it to their own needs.
Selecting a suitable development method for a specific project context is one of the most challenging activities in process design. Every project is unique and, thus, many context factors have to be considered. Recent research took some initial steps towards statistically constructing hybrid development methods, yet, paid little attention to the peculiarities of context factors influencing method and practice selection. In this paper, we utilize exploratory factor analysis and logistic regression analysis to learn such context factors and to identify methods that are correlated with these factors. Our analysis is based on 829 data points from the HELENA dataset. We provide five base clusters of methods consisting of up to 10 methods that lay the foundation for devising hybrid development methods. The analysis of the five clusters using trained models reveals only a few context factors, e.g., project/product size and target application domain, that seem to significantly influence the selection of methods. An extended descriptive analysis of these practices in the context of the identified method clusters also suggests a consolidation of the relevant practice sets used in specific project contexts.
Hochschulen sind Teil des Innovationsökosystems: in einer kooperativen Austauschbeziehung fördern sie die regionale Wirtschaft und die gesellschaftliche Entwicklung. Deshalb ist die Förderung von Innovation, Kreativität und unternehmerischem Denken eine wichtige Aufgabe. Die Europäische Kommission hat bereits 2005 unternehmerisches Denken und Handeln als Schlüsselkompetenz für das 21. Jahrhundert definiert: „Unternehmerische Kompetenz ist die Fähigkeit, Ideen in die Tat umzusetzen“ (Europäische Kommission, 2005, S. 21). Entrepreneurship Education boomt und die Förderung von unternehmerischen Kompetenzen an Hochschulen wird vorangetrieben – damit ist die Förderung von Gründungskultur nicht nur Teil der Wirtschaftsbildung sondern vielmehr als Querschnittsaufgabe zu verstehen. Die Entrepreneurial Mission verändert die Lehr- und Lern kultur an den Hochschulen. Zum einen ist es Ziel, Entrepreneurship in der Breite an den Hochschulen zu verankern: Unternehmerisches Denken und Handeln ist eine Kernkompetenz. Zum anderen fördert die Start-up Education an Hochschulen aktiv Unternehmertalente und Ausgründungen.
Das Projekt “Spinnovation” ist ein Verbundprojekt der Hochschule Reutlingen, der Hochschule Aalen und der Hochschule der Medien und wird vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg in der Ausschreibung „Gründungskultur in Studium und Lehre“ gefördert. Seit 2016 wurden dazu an den beteiligten Hochschulen zahlreiche neue Angebote für Studierende entwickelt, um das Thema Entrepreneurship Education curricular zu integrieren und eine Änderung des Mindsets in Richtung Entrepreneurship und Innovation zu bewirken. Basierend auf den Erfahrungen und Ergebnissen aus dem Verbundprojekt Spinnovation können konkrete Handlungsempfehlungen für die Entrepreneurship Education an Hochschulen abgeleitet werden.
With the expansion of cyber-physical systems (CPSs) across critical and regulated industries, systems must be continuously updated to remain resilient. At the same time, they should be extremely secure and safe to operate and use. The DevOps approach caters to business demands of more speed and smartness in production, but it is extremely challenging to implement DevOps due to the complexity of critical CPSs and requirements from regulatory authorities. In this study, expert opinions from 33 European companies expose the gap in the current state of practice on DevOps-oriented continuous development and maintenance. The study contributes to research and practice by identifying a set of needs. Subsequently, the authors propose a novel approach called Secure DevOps and provide several avenues for further research and development in this area. The study shows that, because security is a cross-cutting property in complex CPSs, its proficient management requires system-wide competencies and capabilities across the CPSs development and operation.
Hardly any software development process is used as prescribed by authors or standards. Regardless of company size or industry sector, a majority of project teams and companies use hybrid development methods (short: hybrid methods) that combine different development methods and practices. Even though such hybrid methods are highly individualized, a common understanding of how to systematically construct synergetic practices is missing. In this article, we make a first step towards a statistical construction procedure for hybrid methods. Grounded in 1467 data points from a large‐scale practitioner survey, we study the question: What are hybrid methods made of and how can they be systematically constructed? Our findings show that only eight methods and few practices build the core of modern software development. Using an 85% agreement level in the participants' selections, we provide examples illustrating how hybrid methods can be characterized by the practices they are made of. Furthermore, using this characterization, we develop an initial construction procedure, which allows for defining a method frame and enriching it incrementally to devise a hybrid method using ranked sets of practice.
Among the multitude of software development processes available, hardly any is used by the book. Regardless of company size or industry sector, a majority of project teams and companies use customized processes that combine different development methods— so-called hybrid development methods. Even though such hybrid development methods are highly individualized, a common understanding of how to systematically construct synergetic practices is missing. In this paper, we make a first step towards devising such guidelines. Grounded in 1,467 data points from a large-scale online survey among practitioners, we study the current state of practice in process use to answer the question: What are hybrid development methods made of? Our findings reveal that only eight methods and few practices build the core of modern software development. This small set allows for statistically constructing hybrid development methods. Using an 85% agreement level in the participants’ selections, we provide two examples illustrating how hybrid development methods are characterized by the practices they are made of. Our evidence-based analysis approach lays the foundation for devising hybrid development methods.
Context: Organizations are increasingly challenged by high market dynamics, rapidly evolving technologies and shifting user expectations. In consequence, many organizations are struggling with their ability to provide reliable product roadmaps by applying traditional roadmapping approaches. Currently, many companies are seeking opportunities to improve their product roadmapping practices and strive for new roadmapping approaches. A typical first step towards advancing the roadmapping capabilities of an organization is to assess the current situation. Therefore, the so-called maturity model DEEP for assessing the product roadmapping capabilities of companies operating in dynamic and uncertain environments has been developed and published by the authors.
Objective: The aim of this article is to conduct an initial validation of the DEEP model in order to understand its applicability better and to see if important concepts are missing. In addition, the aim of this article is to evolve the model based on the findings from the initial validation.
Method: The model has been given to practitioners such as product managers with the request to perform a self-assessment of the current product roadmapping practices in their company. Afterwards, interviews with each participant have been conducted in order to gain insights.
Results: The initial validation revealed that some of the stages of the model need to be rearranged and minor usability issues were found. The overall structure of the model was well received. The study resulted in the development of the version 1.1 of the DEEP product roadmap maturity model which is also presented in this article.
Through increasing market dynamics, rapidly evolving technologies and shifting user expectations coupled with the adoption of lean and agile practices, companies are struggling with their ability to provide reliable product roadmaps by applying traditional approaches. Currently, most companies are seeking opportunities to improve their product roadmapping practices. As a first challenge they have to assess their current product roadmapping capabilities in order to better understand how to improve their practices and how to switch to a new approach. The aim of this article is to provide an initial maturity model for product roadmapping practices that is especially suited for assessing the roadmapping capabilities of companies operating in dynamic and uncertain market environments. Based on interviews with 15 experts from 13 various companies the current state of practice regarding product roadmapping was identified. Afterwards, the model development was conducted in the context of expert workshops with the Robert Bosch GmbH and researchers. The study results in the so-called DEEP 1.0 product roadmap maturity model which allows companies to conduct a self assessment of their product roadmapping practice.
Context: Organizations are increasingly challenged by dynamic and technical market environments. Traditional product roadmapping practices such as detailed and fixed long-term planning typically fail in such environments. Therefore, companies are actively seeking ways to improve their product roadmapping approach. Goal: This paper aims at identifying problems and challenges with respect to product roadmapping. In addition, it aims at understanding how companies succeed in improving their roadmapping practices in their respective company contexts. The study focuses on mid-sized and large companies developing software-intensive products in dynamic and technical market environments. Method: We conducted semi structured expert interviews with 15 experts from 13 German companies and conducted a thematic data analysis. Results: The analysis showed that a significant number of companies is still struggling with traditional feature based product-roadmapping and opinion based prioritization of features. The most promising areas for improvement are stating the outcomes a company is trying to achieve and making them part of the roadmap, sharing or co-developing the roadmap with stakeholders, and the establishing discovery activities.