Informatik
Refine
Document Type
- Conference Proceeding (524)
- Article (165)
- Part of a Book (55)
- Doctoral Thesis (13)
- Book (10)
- Anthology (9)
- Patent / Norm / Richtlinie (2)
- Working Paper (2)
- Report (1)
Is part of the Bibliography
- yes (781)
Institute
- Informatik (781)
- Technik (2)
Publisher
- Springer (149)
- Hochschule Reutlingen (107)
- IEEE (80)
- Gesellschaft für Informatik (59)
- Elsevier (36)
- ACM (31)
- IARIA (23)
- Springer Gabler (15)
- De Gruyter (12)
- RWTH Aachen (9)
- SCITEPRESS (8)
- University of Hawai'i at Manoa (8)
- Università Politecnica delle Marche (8)
- Haufe (7)
- AIS Electronic Library (AISeL) (5)
- IOS Press (5)
- MDPI (5)
- Fac. of Organization & Informatics, Univ. of Zagreb (4)
- IGI Global (4)
- RWTH (4)
- SPIE (4)
- Springer International Publishing (4)
- American Marketing Association (3)
- Association for Computing Machinery (3)
- Deutsche Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V. (3)
- Emerald (3)
- IADIS Press (3)
- International Academy of Business Disciplines (3)
- Riga Technical University Press (3)
- Science and Technology Publications (3)
- Springer Science + Business Media B.V (3)
- Springer Science + Business Media B.V. (3)
- University of Konstanz, University Library (3)
- Wiley-Blackwell (3)
- American Marketing Assoc. (2)
- Association for Information Systems (2)
- Association for Information Systems (AIS) (2)
- BioMed Central (2)
- CSW-Verlag (2)
- Curran Associates (2)
- Curran Associates Inc. (2)
- Deutsche Aktuarvereinigung (DAV) e.V. (2)
- EuroMed Press (2)
- GMDS e.V. (2)
- Gabler (2)
- Gesellschaft für Informatik e.V (2)
- HTWG Konstanz (2)
- IADIS (2)
- IBM Research Division (2)
- International Society for Photogrammetry and Remote Sensing (2)
- PZH Verlag, TEWISS-Technik und Wissen GmbH (2)
- PeerJ Ltd. (2)
- Sage (2)
- Smart Home & Living Baden-Württemberg e.V. (2)
- Springer Vieweg (2)
- Taylor & Francis (2)
- The Association for Computing Machinery, Inc. (2)
- Thieme (2)
- University of Hawaii (2)
- University of the West of Scotland (2)
- Universität Stuttgart (2)
- 3m5.Media GmbH (1)
- AIP Publishing (1)
- Academic Conferences International Limited (1)
- Americas conference on information systems : AMCIS / Association for Information Systems (1)
- Association for Computing Machinery ACM (1)
- Association of Computing Machinery (1)
- Berlin (1)
- CIDR (1)
- CMP-WEKA-Verlag (1)
- Circle International (1)
- Copenhagen Business School (1)
- Cornell Universiy (1)
- Cuvillier Verlag (1)
- DIMECC Oy (1)
- DUZ Medienhaus (1)
- Deutsche Gesellschaft für Medizinische Physik (1)
- Deutsche Gesellschaft für die Computer- und Roboterassistierte Chirurgie e.V. (1)
- EDP Sciences (1)
- EMAC (1)
- Ed2.0Work (1)
- Elektronikpraxis, Vogel Business Media GmbH & Co. KG (1)
- Elsevier Science (1)
- EuroMedPress (1)
- Eurographics Association (1)
- Fachausschuß Management der Anwendungsentwicklung und -wartung (1)
- Faculty of Economics (1)
- Faculty of Organization and Informatics, University of Zagreb (1)
- Fraunhofer MEVIS (1)
- GBI-Genios (1)
- GITO-Verl. (1)
- German Medical Science Publishing House (1)
- Haufe Group (1)
- Hochschule Heilbronn (1)
- Hochschule der Medien (1)
- IGI Publ. (1)
- IGI Publishing (1)
- IMC Information multimedia communication AG (1)
- Inderscience Publ. (1)
- Inst. of Electrical and Electronics Engineers (1)
- JMIR Publications (1)
- Johannes Kepler University Linz (1)
- Lausanne (1)
- Lund University (1)
- MCB University Press (1)
- MFG Stiftung Baden-Württemberg (1)
- MHP. a Porsche Company (1)
- NextMed (1)
- Open Proceedings.org, Univ. of Konstanz (1)
- OpenProceedings (1)
- PLOS (1)
- Pabst Science Publishers (1)
- PeerJ (1)
- Riga Technical University (1)
- Rockville, Md. (1)
- Routledge, Taylor & Francis Group (1)
- SISSA (1)
- Science and Technology Publications, Lda (1)
- Shaker Verlag (1)
- Society for Science and Education (1)
- Springer Nature (1)
- Springer Science + Business Media (1)
- Technical University (1)
- Technische Universität Darmstadt (1)
- The Association for Computing Machinery (1)
- The University of Edinburgh : Informatics (1)
- Univ. de Jaén (1)
- Universidad Carlos III de Madrid (1)
- University of Minho (1)
- University of Portsmouth (1)
- University of Zagreb Faculty of Organization and Informatics (1)
- Universität Trier (1)
- Universität Tübingen (1)
- Universität des Saarlandes (1)
- Univerzita Tomáe Bati (1)
- Wiley (1)
- World Scientific (1)
- World Scientific Publishing (1)
- dpunkt-Verlag (1)
- libreriauniversitaria.it.edizioni (1)
- vwh (1)
The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.
Hintergrund: Endoskopische Operationsverfahren haben sich als Goldstandard in der Nasennebenhöhlen-(NNH-)Chirurgie etabliert. Den sich daraus ergebenden Herausforderungen für die chirurgische Ausbildung kann durch den Einsatz von Virtuelle-Realität-(VR-)Trainingssimulatoren begegnet werden. Bislang wurde eine Reihe von Simulatoren für NNH-Operationen entwickelt. Frühere Studien im Hinblick auf den Trainingseffekt wurden jedoch nur mit medizinisch vorgebildeten Probanden durchgeführt oder es wurde nicht über dessen zeitlichen Verlauf berichtet.
Methoden: Ein NNH-CT-Datensatz wurde nach der Segmentierung in ein 3-dimensionales, polygonales Oberflächenmodell überführt und mithilfe von originalem Fotomaterial texturiert. Die Interaktion mit der virtuellen Umgebung erfolgte über ein haptisches Eingabegerät. Während der Simulation wurden die Parameter Eingriffsdauer und Fehleranzahl erfasst. Zehn Probanden absolvierten jeweils eine Trainingseinheit bestehend aus je 5 Übungsdurchläufen an 10 aufeinanderfolgenden Tagen.
Ergebnisse: Vier Probanden verringerten die benötigte Zeit um mehr als 60% im Verlauf des Übungszeitraums. Vier der Probanden verringerten ihre Fehleranzahl um mehr als 60%. Acht von 10 Probanden zeigten eine Verbesserung bezüglich beider Parameter. Im Median wurde im gesamten gemessenen Zeitraum die Dauer des Eingriffs um 46 Sekunden und die Fehleranzahl um 191 reduziert. Die Überprüfung eines Zusammenhangs zwischen den 2 Parametern ergab eine positive Korrelation.
Schlussfolgerung: Zusammenfassend lässt sich feststellen, dass das Training am NNH-Simulator auch bei unerfahrenen Personen die Performance beträchtlich verbessert, sowohl in Bezug auf die Dauer als auch auf die Genauigkeit des Eingriffs.
In our initial DaMoN paper, we set out the goal to revisit the results of “Starring into the Abyss [...] of Concurrency Control with [1000] Cores” (Yu in Proc. VLDB Endow 8: 209-220, 2014). Against their assumption, today we do not see single-socket CPUs with 1000 cores. Instead, multi-socket hardware is prevalent today and in fact offers over 1000 cores. Hence, we evaluated concurrency control (CC) schemes on a real (Intel-based) multi-socket platform. To our surprise, we made interesting findings opposing results of the original analysis that we discussed in our initial DaMoN paper. In this paper, we further broaden our analysis, detailing the effect of hardware and workload characteristics via additional real hardware platforms (IBM Power8 and 9) and the full TPC-C transaction mix. Among others, we identified clear connections between the performance of the CC schemes and hardware characteristics, especially concerning NUMA and CPU cache. Overall, we conclude that no CC scheme can efficiently make use of large multi-socket hardware in a robust manner and suggest several directions on how CC schemes and overall OLTP DBMS should evolve in future.
Current data-intensive systems suffer from scalability as they transfer massive amounts of data to the host DBMS to process it there. Novel near-data processing (NDP) DBMS architectures and smart storage can provably reduce the impact of raw data movement. However, transferring the result-set of an NDP operation may increase the data movement, and thus, the performance overhead. In this paper, we introduce a set of in-situ NDP result-set management techniques, such as spilling, materialization, and reuse. Our evaluation indicates a performance improvement of 1.13 × to 400 ×.
Context-aware systems to support actors in the operating room depending on the status of the intervention require knowledge about the current situation in the intra-operative area. In literature, solutions to achieve situation awareness already exist for specific use cases, but applicability and transferability to other conditions are less addressed. It is assumed that a unified solution that can be adapted to different processes and sensors would allow for greater flexibility, applicability, and thus transferability to different applications. To enable a flexible and intervention-independent system, this work proposes a concept for an adaptable situation recognition system. The system consists of four layers with several modular components for different functionalities. The feasibility is demonstrated via prototypical implementation and functional evaluation of a first basic framework prototype. Further development goal is the stepwise extension of the prototype.
Background
Although teledermatology has been proven internationally to be an effective and safe addition to the care of patients in primary care, there are few pilot projects implementing teledermatology in routine outpatient care in Germany. The aim of this cluster randomized controlled trial was to evaluate whether referrals to dermatologists are reduced by implementing a store-and-forward teleconsultation system in general practitioner practices.
Methods
Eight counties were cluster randomized to the intervention and control conditions. During the 1-year intervention period between July 2018 and June 2019, 46 general practitioner practices in the 4 intervention counties implemented a store-and-forward teledermatology system with Patient Data Management System interoperability. It allowed practice teams to initiate teleconsultations for patients with dermatologic complaints. In the four control counties, treatment as usual was performed. As primary outcome, number of referrals was calculated from routine health care data. Poisson regression was used to compare referral rates between the intervention practices and 342 control practices.
Results
The primary analysis revealed no significant difference in referral rates (relative risk = 1.02; 95% confidence interval = 0.911–1.141; p = .74). Secondary analyses accounting for sociodemographic and practice characteristics but omitting county pairing resulted in significant differences of referral rates between intervention practices and control practices. Matched county pair, general practitioner age, patient age, and patient sex distribution in the practices were significantly related to referral rates.
Conclusions
While a store-and-forward teleconsultation system was successfully implemented in the German primary health care setting, the intervention's effect was superimposed by regional factors. Such regional factors should be considered in future teledermatology research.
Physicians in interventional radiology are exposed to high physical stress. To avoid negative long-term effects resulting from unergonomic working conditions, we demonstrated the feasibility of a system that gives feedback about unergonomic
situations arising during the intervention based on the Azure Kinect camera. The overall feasibility of the approach could be shown.
We present a multitask network that supports various deep neural network based pedestrian detection functions. Besides 2D and 3D human pose, it also supports body and head orientation estimation based on full body bounding box input. This eliminates the need for explicit face recognition. We show that the performance of 3D human pose estimation and orientation estimation is comparable to the state-of-the-art. Since very few data sets exist for 3D human pose and in particular body and head orientation estimation based on full body data, we further show the benefit of particular simulation data to train the network. The network architecture is relatively simple, yet powerful, and easily adaptable for further research and applications.
Hybrid project management is an approach that combines traditional and agile project management techniques. The goal is to benefit from the strengths of each approach, and, at the same time avoid the weaknesses. However, due to the variety of hybrid methodologies that have been presented in the meantime, it is not easy to understand the differences or similarities of the methodologies, as well as, the advantages or disadvantages of the hybrid approach in general. Additionally, there is only fragmented knowledge about prerequisites and success factors for successfully implementing hybrid project management in organizations. Hence, the aim of this study is to provide a structured overview of the current state of research regarding the topic. To address this aim, we have conducted a systematic literature review focusing on a set of specific research questions. As a result, four different hybrid methodologies are discussed, as well as, the definition, benefits, challenges, suitability and prerequisites of hybrid project management. Our study contributes to knowledge by synthesizing and structuring prior work in this growing area of research, which serves as a basis for purposeful and targeted research in the future.
Purpose
Artificial intelligence (AI), in particular deep neural networks, has achieved remarkable results for medical image analysis in several applications. Yet the lack of explainability of deep neural models is considered the principal restriction before applying these methods in clinical practice.
Methods
In this study, we propose a NeuroXAI framework for explainable AI of deep learning networks to increase the trust of medical experts. NeuroXAI implements seven state-of-the-art explanation methods providing visualization maps to help make deep learning models transparent.
Results
NeuroXAI has been applied to two applications of the most widely investigated problems in brain imaging analysis, i.e., image classification and segmentation using magnetic resonance (MR) modality. Visual attention maps of multiple XAI methods have been generated and compared for both applications. Another experiment demonstrated that NeuroXAI can provide information flow visualization on internal layers of a segmentation CNN.
Conclusion
Due to its open architecture, ease of implementation, and scalability to new XAI methods, NeuroXAI could be utilized to assist radiologists and medical professionals in the detection and diagnosis of brain tumors in the clinical routine of cancer patients. The code of NeuroXAI is publicly accessible at https://github.com/razeineldin/NeuroXAI.