Informatik
Refine
Document Type
- Conference Proceeding (34)
- Part of a Book (10)
Language
- English (44) (remove)
Publisher
- Gesellschaft für Informatik (44) (remove)
The need for creating digitally enhanced products, services, and experiences as well as the emergence of new or modified business models has a significant impact on the automotive domain. Innovative solutions and new topics such as Smart Mobility or Connectivity require current automotive development processes to undergo major changes. They need to be redesigned in a way that it is possible to learn and adapt continuously at a fast pace. Agile methods are promising approaches to address these new challenges. However, agile methods are not tailored to the specific characteristics of the automotive domain such as software product line (SPLs) development. Although, there have been efforts to apply agile methods in the automotive domain, widespread adoptions have not yet taken place.
Software engineering education is supposed to provide students with industry-relevant knowledge and skills. Educators must address issues beyond exercises and theories that can be directly rehearsed in small settings. A way to experience such effects and to increase the relevance of software engineering education is to apply empirical studies in teaching. In our article, we show how different types of empirical studies can be used for educational purposes in software engineering. We give examples illustrating how to utilize empirical studies, discuss challenges, and derive an initial guideline that supports teachers to include empirical studies in software engineering courses.
Software and system development faces numerous challenges of rapidly changing markets. To address such challenges, companies and projects design and adopt specific development approaches by combining well-structured methods and flexible agile practices. Yet, the number of methods and practices is large and the actual process composition is often carried out in an ad-hoc manner. This paper reports on a survey on hybrid software development approaches. We study which approaches are used in practice, how different approaches are combined, and what contextual factors influence the use and combination of hybrid software development approaches.
Due to rapidly changing technologies and business contexts, many products and services are developed under high uncertainties. It is often impossible to predict customer behaviors and outcomes upfront. Therefore, product and service developers must continuously find out what customers want, requiring a more experimental mode of management and appropriate support for continuously conducting experiments. We have analytically derived an initial model for continuous experimentation from prior work and matched it against empirical case study findings from two startup companies. We examined the preconditions for setting up an experimentation system for continuous customer experiments. The resulting RIGHT model for Continuous Experimentation (Rapid Iterative value creation Gained through High-frequency Testing) illustrates the building blocks required for such a system and the necessary infrastructure. The major findings are that a suitable experimentation system requires the ability to design, manage, and conduct experiments, create so-called minimum viable products or features, link experiment results with a product roadmap, and manage a flexible business strategy. The main challenges are proper, rapid design of experiments, advanced instrumentation of software to collect, analyse, and store relevant data, and integration of experiment results in the product development cycle, software development process, and business strategy. This summary refers to the article The RIGHT Model for Continuous Experimentation, published in the Journal of Systems and Software [Fa17].
The ability to develop and deploy high-quality software at a high speed gets increasing relevance for the comptetitiveness of car manufacturers. Agile practices have shown benefits such as faster time to market in several application domains. Therefore, it seems to be promising to carefully adopt agile practices also in the automotive domain. This article presents findings from an interview-based qualitative survey. It aims at understanding perceived forces that support agile adoption. Particularly, it focuses on embedded software development for electronic control units in the automotive domain.
In this paper we build on our research in data management on native Flash storage. In particular we demonstrate the advantages of intelligent data placement strategies. To effectively manage phsical Flash space and organize the data on it, we utilize novel storage structures such as regions and groups. These are coupled to common DBMS logical structures, thus require no extra overhead for the DBA. The experimental results indicate an improvement of up to 2x, which doubles the longevity of Flash SSD. During the demonstration the audience can experience the advantages of the proposed approach on real Flash hardware.
This paper investigates the impact of dynamic capabilities (DC) on brand love. From a resource-based view, there is little clarity vis-à-vis the specific capabilities that drive the ability to create brand love. This paper focuses on three research questions: Firstly, which dynamic capabilities are relevant for brand love? Secondly, how strong is the impact of certain dynamic capabilities on brand love? Thirdly, which conditions mediate and moderate the impact of specific dynamic capabilities on brand love? Data from a multi-method research approach have been used to itentify the specific capabilities that corporations need, to enhance brand love. Furthermore, a standardized online survey was conducted on marketing executives and evaluated by structural equation modeling. The results indicate, that customer expertise plays a major role in the relationship between dynamic capabilities and brand love. Furthermore, this relationship is more important in markets that have a low competitive differentiation in products and services.
Pokémon Go was the first mobile Augmented Reality (AR) game that made it to the top of the download charts of mobile applications. However, very little is known about this new generation of mobile online Augmented Reality (AR) games. Existing media usage and technology acceptance theories provide limited applicability to the understanding of its users. Against this background, this research provides a comprehensive framework that incorporates findings from uses & gratification theory (U>), technology acceptance and risk research as well as flow theory. The proposed framework aims at explaining the drivers of attitudinal and intentional reactions, such as continuance in gaming or willingness to conduct in-app purchases. A survey among 642 Pokémon Go players provides insights into the psychological drivers of mobile AR games. Results show that hedonic, emotional and social benefits, and social norms drive, vice versa physical risks (but not privacy risks) hinder consumer reactions. However, the importance of these drivers differs between different forms of user behavior.
The increasing number of connected mobile devices such as fitness trackers and smartphones define new data for health insurances, enabling them to gain deeper insights into the health of their customers. These additional data sources plus the trend towards an interconnected health community, including doctors, hospitals and insurers, lead to challenges regarding data filtering, organization and dissemination. First, we analyze what kind of information is relevant for a digital health insurance. Second, functional and non-functional requirements for storing and managing health data in an interconnected environment are defined. Third, we propose a data architecture for a digitized health insurance, consisting of a data model and an application architecture.
Digitization in the energy sector is a necessity to enable energy savings and energy efficiency potentials. Managing decentralized corporate energy systems is hindered by a non-existence. The required integration of energy objectives into business strategy creates difficulties resulting in inefficient decisions. To improve this, practice-proven methods such as Balanced Scorecard, Enterprise Architecture Management and the Value Network approach are transferred to the energy domain. The methods are evaluated based on a case study. Managing multi-dimensionality, high complexity and multiple actors are the main drivers for an effective and efficient energy management system. The underlying basis to gain the positive impacts of these methods on decentralized corporate energy systems is digitization of energy data and processes.
Smart meter based business models for the electricity sector : a systematical literature research
(2017)
The Act on the Digitization of the Energy Transition forces German industries and households to introduce smart meters in order to save engery, to gain individual based electricity tariffs and to digitize the energy data flow. Smart meter can be regarded as the advancement of the traditional meter. Utilizing this new technology enables a wide range of innovative business models that provide additional value for the electricity suppliers as well as for their customers. In this study, we followed a two-step approach. At first, we provide a state-of-the-art comparison of these business models found in the literature and identify structural differences in the way they add value to the offered products and services. Secondly, the business models are grouped into categories with respect to customer segmetns and the added value to the smart grid. Findings indicate that most business models focus on the end-costumer as their main customer.
In recent times, enterprises have been increasingly dealing with the use of social media in internal communication and collaboration. In particular, so-called Enterprise Social Networks (ESN) promise meaningful benefits for the nature of work in corporations. However, these platforms often suffer from poor degrees of use. This raises the question of what initiatives enterprise can launch in order to stimulate the vitality of ESN. Since the use of ESN is often voluntary, individual adoption by employees need to be examined to find an answer. Therefore, the Unified Theory of Acceptance and Use of Technology (UTAUT) model was selected for the theoretical foundation of this paper. Following a qualitative research approach, the available research provides an analysis of expert interviews on specific ESN implementation strategies and included factors. In order to extensively conceptualize and generalize these strategic considerations, we conducted an inductive coding process. The results reveal that ESN implementation strategies can be understood as a multi-level construct (individual vs. group vs. organizational level) containing different factors dependent on the degree of documentation and intensity. This research in progress describes a qualitative evaluation as a preliminary study for further quantitative analysis of an ESN adoption model.
Steady growing research material in a variety of databases, repositories and clouds make academic content more than ever hard to discover. Finding adequate material for the own research however is essential for every researcher. Based on recent developments in the field of artificial intelligence and the identified digital capabilities of future universities a change in the basic work of academic research is predicted. This study defines the idea of how artificial intelligence could simplifiy academic research at a digital university. Today's studies in the field of AI spectacle the true potential and its commanding impact on academic research.
The digital transformation of our society changes the way we live, work, learn, communicate, and collaborate. This disruptive change drive current and next information processes and systems that are important business enablers for the context of digitization since years. Our aim is to support flexibility and agile transformations for both business domains and related information technology with more flexible enterprise information systems through adaptation and evolution of digital architectures. The present research paper investigates the continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, like microservices and the Internet of Things, as part of a new composed digital architecture. To integrate micro-granular architecture models into living architectural model versions we are extending enterprise architecture reference models by state of art elements for agile architectural engineering to support digital products, services, and processes.
With the Internet of Things being one of the most discussed trends in the computer world lately, many organizations find themselves struggling with the great paradigm shift and thus the implementation of IoT on a strategic level. The Ignite methodoogy as a part of the Enterprise-IoT project promises to support organizations with these strategic issues as it combines best practices with expert knowledge from diverse industries helping to create a better understanding of how to transform into an IoT driven business. A framework that is introduced within the context of IoT business model development is the Bosch IoT Business Model Builder. In this study the provided framework is compared to the Osterwalder Business Model Canvas and the St. Gallen Business Model Navigator, the most commonly used and referenced frameworks according to a quantitative literature analysis.
The third Digital Enterprise Computing Conference DEC 17 at the Herman Hollerith Center in Böblingen brings together students, researchers, and practitioners to discuss solutions, experiences, and future developments for the digital transformation. Digitization of business and IT defines the conference agenda: digital models & architecture, digital marketing, agility & innovation.
Software process improvement (SPI) is around for decades: frameworks are proposed, success factors are studied, and experiences have been reported. However, the sheer mass of concepts, approaches, and standards published over the years overwhelms practitioners as well as researchers. What is out there? Are there new emerging approaches? What are open issues? Still, we struggle to answer the question for what is the current state of SPI and related research? We present initial results from a systematic mapping study to shed light on the field of SPI and to draw conclusions for future research directions. An analysis of 635 publications draws a big picture of SPI-related research of the past 25 years. Our study shows a high number of solution proposals, experience reports, and secondary studies, but only few theories. In particular, standard SPI models are analyzed and evaluated for applicability, especially from the perspective of SPI in small-to-medium-sized companies, which leads to new specialized frameworks. Furthermore, we find a growing interest in success factors to aid companies in conducting SPI.
This summary refers to the paper Software process improvement : where is the evidence? [Ku15].
This paper was published as full research paper in the ICSSP’2015 proceedings.
A software process is the game plan to organize project teams and run projects. Yet, it still is a challenge to select the appropriate development approach for the respective context. A multitude of development approaches compete for the users’ favor, but there is no silver bullet serving all possible setups. Moreover, recent research as well as experience from practice shows companies utilizing different development approaches to assemble the best-fitting approach for the respective company: a more traditional process provides the basic framework to serve the organization, while project teams embody this framework with more agile (and/or lean) practices to keep their flexibility. The paper at hand provides insights into the HELENA study with which we aim to investigate the use of “Hybrid dEveLopmENt Approaches in software systems development”. We present the survey design and initial findings from the survey’s test runs. Furthermore, we outline the next steps towards the full survey.
Although still in the early stages of diffusion, smartwatches represent the most popular type of wearable devices. Yet, little is known why some people are more likely to adopt smartwatches than others. To deepen the understanding of underlying factors prompting adoption behavior, the authors develop a theoretical model grounded in technology acceptance and social psychology literature. Empirical results reveal perceived usefulness and visibility as important factors that drive intention. The magnitude of these antecedents is influenced by an individual’s perception of viewing smartwatches as a technology and/or as a fashion accessory. Theoretical and managerial implications are discussed.
Rapidly growing data volumes push today's analytical systems close to the feasible processing limit. Massive parallelism is one possible solution to reduce the computational time of analytical algorithms. However, data transfer becomes a significant bottleneck since it blocks system resources moving data-to-code. Technological advances allow to economically place compute units close to storage and perform data processing operations close to data, minimizing data transfers and increasing scalability. Hence the principle of Near Data Processing (NDP) and the shift towards code-to-data. In the present paper we claim that the development of NDP-system architectures becomes an inevitable task in the future. Analytical DBMS like HPE Vertica have multiple points of impact with major advantages which are presented within this paper.